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LETTER FROM THE EDITOR

The articles in this issue deal with long-standing questions in combinatorics and
group theory.

In the first article, Nicholas Pippenger starts with a well-known problem about
voltages on the vertices of a cube, and provides, at last, a complete solution.
Along the way he illustrates a full set of combinatorial methods, including gen-
erating functions, asymptotic expansions, and direct counting arguments. He
makes a connection as well to preferential arrangements, which will attract the
attention of voting theorists.

Some of us know Cayley graphs mainly from their frequent occurrence as
examples in graph theory. In the article by Richard Goldstone, John McCabe,
and Kathryn Weld, they become the center of attention in their own right. Does
the Cayley Graph determine the group? Not always, it turns out, and in answering
the question, the authors draw on the work of some founders of group theory.

The Note by Art Benjamin, Bob Chen, and Kimberly Kindred gives a new proof
of an old formula for sums of binomial coefficients. They give a combinatorial
argument, but is it really a counting argument? They are counting with complex
numbers, not just integers.

Also in the Notes, both Jacob Siehler and Eugene Gover look at sequences that
are monotone for a while, and then change direction—but Siehler’s sequences
are random, while Gover’s are definitely not. Christopher Swanson finds deep
mathematics in a shouting game, and Robert Lamphere shows us how circular
Newtonian orbits would operate in hyperbolic space. Finally, Jerzy Kocik ana-
lyzes a pattern of tangent circles, which inspires the image on this month’s cover.

This issue marks the end of my first year as Editor. It has been a joy. The best
part of the job is reading the many excellent submissions, published and unpub-
lished. We always wish we had more pages. All of the MAA journals depend
absolutely on the talent and efforts of all of our authors.

The MAGAZINE also depends on the “thoughtful and measured reflection” of
its referees. We are glad to recognize them at page 400. (The quoted phrase is
from the Reviews column, which includes some thoughts on referees’ roles; see
page 398.)

It has been a pleasure to work with the Associate Editors, with the MAA Pub-
lications Staff, and with Frank Farris, my predecessor as Editor and now Chair of
the MAA’s Publications Council. I’m pleased to thank both Swarthmore College
and Bryn Mawr College for library access as well as welcoming me into their rich
mathematical community. Finally, we appreciate all those who turn our strings
of characters into a delivered journal after the editors’ work is done.

Walter Stromquist, Editor

330



ARTICLES
The Hypercube of Resistors, Asymptotic

Expansions, and Preferential Arrangements
NICHOLAS P IPPENGER

Harvey Mudd College
Claremont, CA 91711

njp@math.hmc.edu

A classic puzzle asks for the effective resistance between vertices at the ends of a long
diagonal when the edges of a cube are replaced by 1-ohm resistors. The solution relies
on the observation that for each of the endpoints, the three adjacent vertices are at
the same potential, by the symmetry of the cube under a 120◦ rotation about the long
diagonal. The network is thus equivalent to one in which three resistors in parallel are
in series with six resistors in parallel and with three resistors in parallel, for a total
effective resistance of 1/3 + 1/6 + 1/3 = 5/6 ohms. This problem seems first to have
appeared in 1914 in a book by Brooks and Poyser [4]. It has also appeared in this
magazine as Quickie Q32, submitted by Nathan Eisen [9], with an alternative solution
by C. W. Trigg [23]. In case either the problem or its solution seems mysterious, the
Appendix offers a rapid review of the relevant part of circuit theory and the use of
symmetry to solve its problems.

A natural question is: What happens when the 3-dimensional cube is replaced
by an n-dimensional hypercube? This n-dimensional version of the problem was
posed in 1976 by Mullin and Zave as Problem E 2620 in the American Mathematical
Monthly [14], with a solution by Jagers [12], and again in 1979 by Singmaster as
Problem 79-16 in SIAM Review [17], with a solution by Rennie [16]. In this paper, we
shall use this more general problem to explore a number of topics involving asymp-
totic expansion and combinatorial enumeration. We shall conclude by solving the still
more general problem (proposed by Singmaster [17], but apparently still unsolved)
of determining the resistance between vertices at distance k in the n-dimensional
hypercube.

First, we consider the resistance between the endpoints of a long diagonal in the
n-dimensional hypercube. Reasoning as before, we observe that all the vertices at a
given distance from one of the endpoints of the long diagonal are again at the same
potential, so the network is equivalent (in the sense that the potential difference across,
and current through, each resistor remains unchanged) to a series connection of par-
allel connections of resistors. Since there are n + 1 distances (0, 1, . . . , n) from one
endpoint, there are n parallel connections. There are

(n
k

)
vertices at distance k from the

endpoint, and for 0 ≤ k ≤ n − 1, each of these vertices is connected by n − k resistors
to vertices at distance k + 1. Therefore the total effective resistance is

Rn =
∑

0≤k≤n−1

1(n
k

)
(n − k)

,

Math. Mag. 83 (2010) 331–346. doi:10.4169/002557010X529752. c© Mathematical Association of America
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and using the identity
(n

k

)
(n − k) = n

(n−1
k

)
(which is easily seen using the expressions

for binomial coefficients in terms of factorials) we see that this is equivalent to

Rn = 1

n

∑
0≤k≤n−1

1(n−1
k

) . (1)

The numbers being summed in (1) are elements of the “harmonic triangle”, consid-
ered by Leibniz as a companion to the “arithmetic triangle” of Pascal (see Boyer [3,
p. 439]). In the arithmetic triangle

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
...

. . . ,

each entry (except the first and last in each row) is the sum of the elements to its north
and its north-west, while in the harmonic triangle

1/1
1/2 1/2
1/3 1/6 1/3
1/4 1/12 1/12 1/4
1/5 1/20 1/30 1/20 1/5
1/6 1/30 1/60 1/60 1/30 1/6
...

. . . ,

each entry is the sum of the elements to its south and south-east. The resistance Rn is
the sum of the entries in the n-th row:

n : 0 1 2 3 4 5 6 7 8 · · ·
Rn : 0 1 1 5/6 2/3 8/15 13/30 151/420 32/105 · · · .

The appearance of the reciprocals of binomial coefficients in (1) suggests that we also
consider the sum

Sn =
∑

0≤k≤n

1(n
k

) , (2)

which has the following values:

n : 0 1 2 3 4 5 6 7 8 · · ·
Sn : 1 2 5/2 8/3 8/3 13/5 151/60 256/105 83/35 · · · .

Of course, these two sequences are linked by the relations

Rn = 1

n
Sn−1 and Sn = (n + 1)Rn+1. (3)

In the next section, we shall review some exact results (alternative expressions and
generating functions) involving the numbers Rn and Sn . We shall also consider asymp-
totic expansions for these numbers; the coefficients in these asymptotic expansions
have simple combinatorial interpretations that will launch us on a tour of old and
new results in combinatorial enumeration. Finally, we shall return to the hypercube
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of resistors, and consider the resistance between vertices that are not the endpoints of
a long diagonal.

Alternative expressions and generating functions

The numbers Rn and Sn have alternative expressions,

Rn = 1

2n

∑
1≤k≤n

2k

k
(4)

and

Sn = n + 1

2n

∑
0≤k≤n

2k

k + 1
, (5)

which are equivalent to each other by virtue of (3). While having just as many terms
as (1) and (2), these sums have simpler summands, and will thus lend themselves more
easily to further developments.

The first proof of (5) was given by Staver [19], who derived from (2) the recurrence
Sn = (

(n + 1)/2n
)
Sn−1 + 1, from which (5) follows by induction from the base case

S0 = 1. The formula (4) was given without proof by Jagers [12], and was given with an
“electrical” proof by Rennie [16], as follows. First, let a current of 1 ampere flow into a
vertex A and out of a vertex B long-diagonally opposite to A. If B is at potential 0, then
A is at potential Rn volts. Let A′ be adjacent to A, and B ′ long-diagonally opposite to
A′, and therefore adjacent to B. By symmetry, 1/n amperes flows through the 1-ohm
resistor from A to A′, so A′ is at potential Rn − 1/n volts. By a similar argument, B ′
is at potential 1/n volts. Second, reconnect the current source so that 1 ampere flows
into A′ and out of B ′. If B ′ is at potential 0, then A′ is at potential Rn volts, A is at
potential Rn − 1/n volts, and B is at potential 1/n volts. Third, suppose that currents
of 1 ampere flow in at each of A and A′, and out of each of B and B ′. By linearity, we
may superimpose the potentials and subtract 1/n from their sum, putting B and B ′ at
potential 0, and A and A′ at potential 2Rn − 2/n volts. But with this final current dis-
tribution, 1 ampere flows from A to B ′ through the resistors of an (n − 1)-dimensional
hypercube, 1 ampere flows from A′ to B through the resistors of another disjoint
(n − 1)-dimensional hypercube, and no current flows through the resistors connect-
ing corresponding vertices in the two hypercubes, since by symmetry they are at equal
potentials. Thus if B and B ′ are at potential 0, A and A′ are at potential Rn−1 volts. We
therefore have 2Rn − 2/n = Rn−1, or Rn = (1/2)Rn−1 + 1/n, from which (4) follows
by induction from the base case R0 = 0. Finally, we mention that Sury [21] proved
(5) by using the integral representation

∫ 1
0 xk(1 − x)n−1−k dx = 1/

(
n
(n−1

k

))
(Euler’s

beta integral), summing the resulting geometric progression inside the integral, and
evaluating the resulting integral by a change of variable.

Equations (4) and (5) allow us easily to derive the generating functions R(z) =∑
n≥0 Rn zn and S(z) = ∑

n≥0 Sn zn for the sequences Rn and Sn . Indeed, since
−log(1 − z) = z + z2/2 + z3/3 + · · · + zk/k + · · · , we see that 2k/k is the coefficient
of zk in −log(1 − 2z) (when k ≥ 1). If A(z) = ∑

n≥0 An zn and B(z) = ∑
n≥0 Bn zn

are the generating functions for the sequences An and Bn , respectively, then C(z) =
A(z) B(z) is the generating function for the sequence Cn = ∑

0≤k≤n Ak Bn−k , called
the “convolution” of the sequences An and Bn . As a special case, B(z) = 1/(1 − z)
is the generating function for the sequence Bn = 1, so that A(z)/(1 − z) is the gener-
ating function for the sequence

∑
0≤k≤n Ak of partial sums of the sequence An . Thus
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1≤k≤n 2k/k is the coefficient of zn in

(−log(1 − 2z)
)
/(1 − z), and 2−n

∑
1≤k≤n 2k/k

is the coefficient of zn in
(−log(1 − z)

)
/(1 − 1

2 z) (even for k = 0), so that

R(z) = 1

1 − 1
2 z

log
1

1 − z
. (6)

From (3), we see that S(z) = R′(z), so differentiating (6) yields

S(z) = 1

(1 − z)(1 − 1
2 z)

+ 1

2(1 − 1
2 z)2

log
1

1 − z
. (7)

Generating functions for sums similar to (4) and (5) have been given by Pla [15].

Asymptotic expansions

The results of the preceding section give exact values of Rn and Sn as rational num-
bers but they yield little insight into the behavior of these sequences for large n. To
obtain this insight, we develop asymptotic expansions. It will be convenient to use “O-
notation”, where O

(
f (n)

)
stands for some function g(n) (possibly a different function

at each occurrence) such that |g(n)| ≤ c f (n) for some constant c and all sufficiently
large n.

We start with (1). Since the binomial coefficients
(n−1

k

)
increase as k increases from

0 to �(n − 1)/2�, then decrease as k increases from 	(n − 1)/2
 to n − 1, the largest
terms in (1) are the first and last: 1/

(n−1
0

) = 1/
(n−1

n−1

) = 1. The next largest terms are the

second and second-to-last, which are 1/
(n−1

1

) = 1/
(n−1

n−2

) = O(1/n). There are n − 4

other terms, and each of these is at most 1/
(n−1

2

) = 1/
(n−1

n−3

) = O(1/n2), so the sum of
all these other terms is also O(1/n). Thus we have

Rn = 2

n
+ O

(
1

n2

)
. (8)

This result gives a good estimate of Rn when n is large.
We can refine the estimate (8) by including the second and second-to-last terms

exactly. Now the third and third-to-last terms are O(1/n2), and each of the remaining
n − 6 terms is O(1/n3), so their sum is also O(1/n2). This yields

Rn = 2

n

(
1 + 1

n − 1
+ O

(
1

n2

))
.

Continuing in this way, we obtain

Rn = 2

n

(
1 + 1

(n − 1)
+ 2

(n − 1)(n − 2)
+ · · ·

+ k!
(n − 1)(n − 2) · · · (n − k)

+ O

(
1

nk+1

))
(9)

for any fixed k. This derivation is valid when n ≥ 2k (otherwise, we are double-
counting terms).

Equation (9) gives a sort of asymptotic expansion for Rn , but its content would be
clearer if the denominator of each term were a power of n, instead of the “falling pow-
ers” (n − 1)(n − 2) · · · (n − k) that appear there. That is, we would like an expansion
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of the form

Rn = 2

n

(
r0 + r1

n
+ r2

n2
+ · · · + rk

nk
+ O

(
1

nk+1

))
(10)

for each k ≥ 0. It is customary to write

n Rn

2
∼ r0 + r1

n
+ r2

n2
+ · · · + rk

nk
+ · · · (11)

as shorthand for the assertion of (10) for each k ≥ 0. The series (11) is called an asymp-
totic expansion; it is not convergent for any n (since the k! in the numerators grows
faster than the exponential nk in the denominator), but it allows Rn to be approximated
with an error O(1/nk) for any fixed k and all sufficiently large n (where the constant
hidden in the O-notation depends on k).

Our task is to determine the coefficients r0, r1, . . . in (11). To do this we shall expand
each term k!/(n − 1)(n − 2) · · · (n − k) in (9) into a series of negative powers of n,

k!
(n − 1)(n − 2) · · · (n − k)

=
∑
�≥k

k! tk,�

n�
, (12)

then sum the contributions to r� for each k ≤ �. First, we consider the numbers tk,�

in the expansion (12). They are what have come to be called the “Stirling numbers of
the second kind”, for which we shall use the notation suggested by Knuth [13, p. 65]:
tk,� = {

�

k

}
. These numbers were introduced by James Stirling in the introduction to

his Methodus Differentialis [20] in 1730. He defined them as the numbers that express
a power z� of z as a linear combination of the polynomials z, z(z − 1), . . . , z(z −
1) · · · (z − � + 1):

z� =
∑

0≤k≤�

{
�

k

}
z(z − 1) · · · (z − k + 1),

and he gave a table for 1 ≤ k ≤ � ≤ 9. The number
{

�

k

}
has a simple combinato-

rial interpretation: it is the number of ways to partition the � elements of the set
L = {1, . . . , �} into k blocks (non-empty subsets of � that are pairwise disjoint and
whose union is �). For � = 3, for example, we have one partition {{1, 2, 3}} into one
block, three partitions {{1}, {2, 3}}, {{1, 2}, {3}} and {{1, 3}, {2}} into two blocks and
one partition {{1}, {2}, {3}} into three blocks; thus

{ 3
1

} = 1,
{ 3

2

} = 3 and
{ 3

3

} = 1. At
the end of his introduction, Stirling gives the expansion

1

(z + 1)(z + 2) · · · (z + k)
=

∑
�≥k

(−1)�−k

{
�

k

}
1

z�
,

which, upon substitution of −n for z, gives (12) in the form

k!
(n − 1)(n − 2) · · · (n − k)

=
∑
�≥k

k!
{

�

k

}
1

n�
.

These expansions are in fact convergent for fixed k ≥ 1 and for |z| > 1, or fixed k ≥ 1
and n > k, though Stirling did not distinguish convergent expansions, such as these,
and asymptotic expansions, such as (11). Applying this result to each term in (9) gives
the desired asymptotic expansion:

n Rn

2
∼

∑
�≥0

( ∑
0≤k≤�

{
�

k

}
k!

)
1

n�
.
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Thus the coefficients r� we sought are given by

r� =
∑

0≤k≤�

{
�

k

}
k!. (13)

It will doubtless have occurred to the reader that if there are “Stirling numbers of
the second kind”, there should also be “Stirling numbers of the first kind”. Indeed
there are, and they were also introduced by Stirling [20]. He defined them as the num-
bers that express z(z + 1) · · · (z + � − 1) as a linear combination of the polynomials
z, z2, . . . , z�. Nowadays it is more common to define them as the absolute values of
the numbers that expand z(z − 1) · · · (z − � + 1) as a linear combination of the poly-
nomials z, z2, . . . , z�; in the notation of Knuth [13, p. 65]:

z(z − 1) · · · (z − � + 1) =
∑

0≤k≤�

(−1)�−k

[
�

k

]
zk .

Stirling again gave a table for 1 ≤ k ≤ � ≤ 9, and the expansion

1

zk
=

∑
�≥k

[
�

k

]
1

z(z + 1) · · · (z + k − 1)
.

These numbers too have a simple combinatorial interpretation:
[

�

k

]
is the number of

permutations of � elements that have k cycles. For � = 3, for example, we have two
permutations (123) and (132) with one cycle, three permutations (1)(23), (12)(3) and
(13)(2) with two cycles and one permutation (1)(2)(3) with three cycles; thus

[ 3
1

] =
2,

[ 3
2

] = 3 and
[ 3

3

] = 1. (Because of their combinatorial interpretations, the Stirling
numbers of the first and second kinds are sometimes called the Stirling cycle numbers
and Stirling partition numbers, respectively.)

We can find a similar asymptotic expansion for Sn . Again noting that the largest
terms in the sum (2) are the first and the last, we obtain

Sn = 2 + O

(
1

n

)
.

Generalizing this result as before yields

Sn = 2

(
1 + 1

n
+ 2

n(n − 1)
+ · · · + k!

n(n − 1) · · · (n − k + 1)
+ O

(
1

nk+1

))
.

Applying (12) to each term and summing the contributions for each negative power of
n, we obtain

Sn

2
∼ s0 + s1

n
+ s2

n2
+ · · · + sk

nk
+ · · · , (14)

where

s� =
∑

0≤k≤�

{
�

k

}
(k + 1)!.

The coefficients r� and s� have simple combinatorial interpretations that we shall
study in the following section.
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Preferential arrangements

In this section we shall study the numbers r� and s�. Our model for this study will be a
collection of results concerning the “exponential numbers” d�, given by

d� =
∑

0≤k≤�

{
�

k

}
. (15)

These numbers have a simple combinatorial interpretation: d� is the number of ways
to partition the set {1, . . . , �} into any number of blocks. For � = 3, for example, we
have seen that there is one partition into one block, three partitions into two blocks and
one partition into three blocks; thus d3 = 1 + 3 + 1 = 5. We have the table

� : 0 1 2 3 4 5 6 7 8 · · ·
d� : 1 1 2 5 15 52 203 877 4140 · · · .

(The sequence d� is A000110 in Sloane’s On-Line Handbook of Integer Sequences
[18].)

There are three aspects of the exponential numbers that are of particular interest
to us: a recurrence, a generating function and an expression as the sum of an infinite
series. The recurrence is

d� = δ� +
∑

0≤k≤�−1

(
� − 1

k

)
dk, (16)

where δ� is 1 for � = 0, and 0 for all other values of �. This recurrence allows d� to
be computed from the previous values d0, d1, . . . , d�−1. (We could avoid the use of
δ� by stating the initial condition d0 = 1 separately, but it will be convenient to have
recurrences that hold for all values of �.)

The “exponential generating function” d(z) = ∑
�≥0 d� z�/�! is given by

d(z) = eez−1, (17)

where the term “exponential” refers to the factor 1/�! in the defining sum (in contrast
to the “ordinary” generating functions that we used for the numbers Rn in (6) and Sn

in (7)).
The expression as an infinite sum is

d� = 1

e

∑
n≥0

n�

n! , (18)

where e = 2.7182 . . . is the base of natural logarithms. Since d� is expressed as a
finite sum in (15), it may not be clear what advantage there is to (18). But the fi-
nite sum involves the Stirling numbers of the second kind, whereas the infinite sum
involves only powers and factorials. Furthermore, the sum (18) has a simple proba-
bilistic interpretation: d� is the �-th moment (that is, the expectation Ex[N �] of the
�-th power N �) of a Poisson-distributed random variable N with mean λ = 1 (since
Pr[N = n] = e−λ λn/n! = e−1(1/n!) for such a random variable).

The exponential numbers were mentioned in 1934 by Bell [1] [2], and are on that
account sometimes called the “Bell numbers”. But (16), (17) and (18) were all given
earlier: (16) in 1933 by Touchard [22] (in an equivalent “umbral” form), (17) in 1886
by Whitworth [24, Proposition XXIV, p. 95] and (18) in 1877 by Dobiński [8] (who
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actually only gave the cases 1 ≤ � ≤ 8; but it is clear from his derivations that d�

satisfies the recurrence (16)).
In his marvelous book Asymptotic Methods in Analysis, N. G. de Bruijn [5, Section

3.3] derives the asymptotic expansion

1

n!
∑

0≤k≤n

k! ∼ 1 + d0

n1
+ d1

n2
+ · · · + dk

nk+1
+ · · · ,

and then says that it is “only for the sake of curiosity” that he mentions that the co-
efficients d�, given by (15), have a combinatorial interpretation. One of our goals in
this paper is to pursue this curiosity; our motto is: whenever the coefficients in an
expansion are integers, look for a combinatorial interpretation!

The coefficients r�, given by (13), also have a simple combinatorial interpretation:
they are the number of ways of ranking � candidates, with ties allowed; that is, the
� candidates are first to be partitioned into equivalence classes, then the equivalence
classes are to be linearly ordered. This interpretation follows from those of

{
�

k

}
and

k!, where k is the number of equivalence classes in the partition. Because of this in-
terpretation, r� is called the number of preferential arrangements of � elements. For
� = 3, for example, the one partition into one block can have its block ordered in one
way, each of the three partitions into two blocks can have its blocks ordered in two
ways and the partition into three blocks can have its blocks ordered in six ways; thus
r3 = 1 · 1 + 3 · 2 + 1 · 6 = 13. We have the table

� : 0 1 2 3 4 5 6 7 8 · · ·
r� : 1 1 3 13 75 541 4683 47293 545835 · · · .

(The sequence r� is A000670 in Sloane [18].) We shall derive the recurrence

r� = δ� +
∑

0≤k≤�−1

(
�

k

)
rk, (19)

the exponential generating function (defined by r(z) = ∑
�≥0 r� z�/�!)

r(z) = 1

2 − ez
(20)

and the summation expression

r� = 1

2

∑
n≥0

n�

2n
. (21)

We begin by deriving the recurrence (19). For � ≥ 1, we can construct a preferential
arrangement on � candidates by first choosing the number k of candidates tied in the
top equivalence class (with k in the range 1 ≤ k ≤ �), then choosing in one of

(
�

k

)
ways

the candidates in this class, and finally choosing in one of r�−k ways a preferential
arrangement of the remaining � − k candidates. This gives us

r� =
∑

1≤k≤�

(
�

k

)
r�−k .
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Making the substitution k = j + 1, then the substitution j = � − 1 − k, and finally
using the identity

(
�

�−k

) = (
�

k

)
, we obtain

r� =
∑

1≤k≤�

(
�

k

)
r�−k

=
∑

0≤ j≤�−1

(
�

j + 1

)
r�− j−1

=
∑

0≤k≤�−1

(
�

� − k

)
rk,

=
∑

0≤k≤�−1

(
�

k

)
rk .

This equation holds for � ≥ 1; since r0 = 1, we obtain (19) for � ≥ 0.
Next we shall derive the exponential generating function (20). Adding r� to both

sides of (19) yields

2r� = δ� +
∑

0≤ j≤�

(
�

j

)
r j . (22)

Multiplying both sides of this equation by z�/�! and summing over � ≥ 0, then making
the substitution k = � − j and using the identity ez = ∑

k≥0 zk/k!, we obtain

2r(z) = 1 +
∑
�≥0

z�

�!
∑

0≤ j≤�

(
�

j

)
r j

= 1 +
∑
j≥0

z j r j

j !
∑
k≥0

zk

k!
= 1 + ez r(z). (23)

Solving this equation for r(z) yields (20).
Finally we shall derive the summation expression (21). To do this, we rewrite the

exponential generating function r(z) from (20):

∑
�≥0

r� z�

�! = 1

2

1

1 − 1
2 ez

= 1

2

∑
n≥0

enz

2n

= 1

2

∑
n≥0

1

2n

∑
�≥0

(nz)�

�!

=
∑
�≥0

(
1

2

∑
n≥0

n�

2n

)
z�

�! .

Since the coefficient of z�/�! must be the same on both sides of this equation, we
obtain (21).



340 MATHEMATICS MAGAZINE

The name “preferential arrangement” was introduced by Gross [10], as was the
summation expression (21). The numbers r� (with a different combinatorial interpreta-
tion involving trees), the recurrence (19) and the generating function (20) were given
by Cayley [6] in 1859; the combinatorial interpretation we have used is implicit in
1866 by Whitworth [24, Proposition XXII, p. 93] (Whitworth shows that the terms{

�

k

}
k! for fixed k have the exponential generating function (ez − 1)k; summation over

k ≥ 0 then yields 1/
(
1 − (ez − 1)

) = 1/(2 − ez).)
We turn now to the numbers s�, which also have a simple combinatorial interpre-

tation: s� is the number of ways of ranking � candidates, with ties allowed, and with
a “bar” that may be placed above all the candidates, between two equivalence classes
of tied candidates, or below all the candidates. Thus we may call s� the number of
barred preferential arrangements of � elements. If there are k equivalence classes of
tied candidates, there are k + 1 positions for the bar. For l = 3, for example, the one
preferential arrangement with one block has two positions for the bar, each of the six
preferential arrangements with two blocks has three positions for the bar, and each of
the six preferential arrangements with three blocks has four positions for the bar; thus
s3 = 1 · 2 + 6 · 3 + 6 · 4 = 44. We have the table

� : 0 1 2 3 4 5 6 7 8 · · ·
s� : 1 2 8 44 308 2612 25988 296564 3816548 · · · .

(The sequence s� is A005649 in Sloane [18].)
Instead of a recurrence for the numbers sn , we shall derive a formula expressing

them in terms of the numbers r�:

s� =
∑

0≤k≤�

(
�

k

)
rk r�−k . (24)

We shall also derive the exponential generating function (which is defined by s(z) =∑
�≥0 s� z�/�! )

s(z) = 1

(2 − ez)2
(25)

and the summation expression

s� = 1

4

∑
n≥0

(n + 1)n�

2n
. (26)

For � ≥ 0, we can construct a barred preferential arrangement on � candidates by
first choosing the number k of candidates above the bar (with k in the range 0 ≤ k ≤ l),
then choosing in one of

(
�

k

)
ways the candidates above the bar, then choosing in one of

rk ways a preferential arrangement of these candidates, and finally choosing in one of
r�−k ways a preferential arrangement of the remaining � − k candidates. This gives the
formula (24). Next, multiplying both sides of (24) by z�/�! and summing over � ≥ 0
yields

s(z) =
∑
�≥0

z�

�!
∑

0≤k≤�

(
�

k

)
rk r�−k

=
∑
k≥0

zk rk

k!
∑
j≥0

z j r j

j !
= r(z)2, (27)
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where we have made the substitution k = � − j . Substituting (20) in this equation
yields (25). Finally, reasoning similar to that used to derive (21) leads to (26).

Before concluding this section, let us derive two more identities relating r� and s�:

r�+1 =
∑

0≤k≤�

(
�

k

)
sk (28)

and

r� + r�+1 = 2s�. (29)

These can be given direct combinatorial proofs (and the reader may enjoy finding
these), but we shall use two different methods that are often useful when dealing with
sequences that have explicit exponential generating functions.

To prove (28), we use the notion of “binomial convolution”. Suppose that a(z) =∑
�≥0 a� z�/�! and b(z) = ∑

�≥0 b� z�/�! are the exponential generating functions for
the sequences a� and b�, respectively. Then

a(z) b(z) =
∑
k≥0

ak zk

k!
∑
j≥0

b j z j

j !

=
∑
�≥0

z�

�!
∑

0≤k≤�

(
�

k

)
ak b�−k,

where we have made the substitution j = � − k. Thus c(z) = a(z) b(z) is the expo-
nential generating function for the sequence c� = ∑

0≤ j≤�

(
�

j

)
a j b�− j , which is called

the binomial convolution of the sequences a� and b�, and denoted (a ∗ b)�. (We have
already encountered binomial convolutions twice in this section: once to derive (23)
from (22), where the convolution can be expressed as s = δ + r ∗ υ, where υ is the
sequence defined by υ� = 1 for all � ≥ 0, which has exponential generating function
υ(z) = ez; and again to derive (27) from (24).) We shall also need the fact that a′(z)
(where the prime indicates differentiation) is the exponential generating function for
the sequence a�+1, which we shall denote a′

�.
To derive (28), we may now observe that r ′(z) = ez/(2 − ez)2 = ez s(z). Thus

r�+1 = r ′
� = (s ∗ υ)�, which yields (28).

To derive (29), we note that r ′(z) = ez/(2 − ez)2 implies that r(z) satisfies the dif-
ferential equation

r ′(z) + r(z) = 2r(z)2. (30)

(This differential equation, together with the initial condition r(0) = 1, uniquely de-
termines r(z). In fact, it is an example of a “Bernoulli equation”, which can be solved
analytically for r(z); see Ince [11, p. 22].) Substituting (27) in (30), we obtain (29).
(We note that (29) can also be obtained from (21) and (26).)

That the numbers s�, defined by (14), have the exponential generating function given
in (25) was given as an exercise (without proof or reference) by Comtet [7, p. 294,
Ex. 15]. Our combinatorial interpretation of these numbers in terms of barred prefer-
ential arrangements seems to be new.

More resistances

We mentioned in the introduction that Singmaster [17] posed in 1978 the problem of
determining Rn . In fact, Singmaster asked not only for Rn , but for Rn,k , the resistance
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between two vertices at distance k (for 1 ≤ k ≤ n) in an n-dimensional hypercube of
1-ohm resistors. Rennie’s solution [16] to Singmaster’s problem covered (by various
arguments) the cases k = 1, 2 and k = n, n − 1, n − 2. We shall finish this paper by
giving (for the first time, and by a single argument) a complete solution to Singmaster’s
problem: for 0 ≤ k ≤ n,

Rn,k = 2

n

∑
0≤ j≤k−1

1(n−1
j

) 1

2n

∑
j+1≤i≤n

(
n

i

)
. (31)

Our solution, like that of Rennie, is based on the principles of symmetry and super-
position. We shall also show that this solution possesses some attractive mathematical
properties: it is an increasing function of k (that is, the further apart the vertices are,
the greater the resistance between them), and it is a concave function of k (that is, the
further apart the vertices are, the less the resistance increases with further increase in
the distance).

Consider the situation in which a current of 1 ampere flows out of a vertex A,
while currents of 1/(2n − 1) amperes flow into each of the 2n − 1 other vertices.
Symmetry ensures that all

(n
j

)
vertices at distance j from A are at the same poten-

tial. Call this potential U j volts, where U0 = 0. There are 1/(n
(n−1

j

)
) 1-ohm resistors

connecting vertices at potential U j to vertices at potential U j+1, and a total current of∑
j+1≤i≤n

(n
i

)
/(2n − 1) amperes flows through them. By Ohm’s law,

U j+1 − U j = 1

n
(n−1

j

) 1

2n − 1

∑
j+1≤i≤n

(
n

i

)
,

and thus

Uk = 1

n

∑
0≤ j≤k−1

1(n−1
j

) 1

2n − 1

∑
j+1≤i≤n

(
n

i

)
,

Now let B be a vertex at distance k from A, and consider the situation in which a
current of 1 ampere flows into B and currents of 1/(2n − 1) amperes flow out of each
of the 2n − 1 other vertices. In this situation there is again a potential difference of Uk

volts between A and B. By superposition, if a current of 1 + 1/(2n − 1) amperes flows
into B and out of A, there will be a potential difference of 2Uk between these vertices.
Again using Ohm’s law, we have

Rn,k = 2

1 + 1/(2n − 1)

1

n

∑
0≤ j≤k−1

1(n−1
j

) 1

2n − 1

∑
j+1≤i≤n

(
n

i

)
,

which yields (31).
It is not obvious that (31) agrees with (1) for k = n. We can verify this agreement

as follows. Using the identities
(n−1

j

) = ( n−1
n−1− j

)
and

(n
i

) = ( n
n−i

)
, we obtain

Rn,n = 2

n

∑
0≤ j≤n−1

1(n−1
j

) 1

2n

∑
j+1≤i≤n

(
n

i

)

= 1

n

∑
0≤ j≤n−1

1(n−1
j

) 1

2n

∑
j+1≤i≤n

(
n

i

)
+ 1

n

∑
0≤ j≤n−1

1(n−1
j

) 1

2n

∑
j+1≤i≤n

(
n

i

)

= 1

n

∑
0≤ j≤n−1

1(n−1
j

) 1

2n

∑
j+1≤i≤n

(
n

i

)
+ 1

n

∑
0≤ j≤n−1

1(n−1
j

) 1

2n

∑
0≤i≤ j

(
n

i

)
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= 1

n

∑
0≤ j≤n−1

1(n−1
j

) 1

2n

∑
0≤i≤n

(
n

i

)

= 1

n

∑
0≤ j≤n−1

1(n−1
j

)
= Rn .

Next, let us show that Rn,k is an increasing function of k (that is, that Rn,k −
Rn,k−1 > 0 for 1 ≤ k ≤ n). From (31) we have

Rn,k − Rn,k−1 = 1

n2n−1

1(n−1
k−1

) ∑
k≤i≤n

(
n

i

)
, (32)

and the expression on the right-hand side is obviously positive.
Finally, we shall show that Rn,k is a concave function of k (that is, that Rn,k −

2Rn,k−1 + Rn,k−2 < 0 for 2 ≤ k ≤ n). From (32) we have

Rn,k − 2Rn,k−1 + Rn,k−2

= 1

n2n−1

(
1(n−1

k−1

) ∑
k≤i≤n

(
n

i

)
− 1(n−1

k−2

) ∑
k−1≤i≤n

(
n

i

))
.

The expression on the right-hand side is obviously negative for k ≤ n/2 + 1, since
in this case we have

(n−1
k−2

) ≤ (n−1
k−1

)
and

∑
k≤i≤n

(n
i

)
<

∑
k−1≤i≤n

(n
i

)
. For the case k >

n/2 + 1, we factor
(n−1

k−2

)
out of the expression in parentheses, then move all but the

first term from the second sum into the first sum:

Rn,k − 2Rn,k−1 + Rn,k−2

= 1

n2n−1

1(n−1
k−2

)
(

k − 1

n − k + 1

∑
k≤i≤n

(
n

i

)
−

∑
k−1≤i≤n

(
n

i

))

= 1

n2n−1

1(n−1
k−2

)
(

2k − n − 2

n − k + 1

∑
k≤i≤n

(
n

i

)
−

(
n

k − 1

))
.

Thus what remains to be proved is that the expression in parenthesis is negative; that
is, that

2k − n − 2

n − k + 1

∑
k≤i≤n

(
n

i

)
<

(
n

k − 1

)

for k > n/2 + 1, or equivalently, by the substitution k = n − j and the identity(n
i

) = ( n
n−i

)
,

n − 2 j − 2

j + 1

∑
0≤i≤ j

(
n

i

)
<

(
n

j + 1

)
(33)

for 0 ≤ j < n/2 − 1.
To prove (33), we observe that 0 ≤ i < n/2 − 1 implies that(

n

i

)
≤ i + 1

n − i

(
n

i + 1

)
.



344 MATHEMATICS MAGAZINE

Since (i + 1)/(n − i) is an increasing function of i , we have(
n

i

)
≤

(
j + 1

n − j

) j−i+1 (
n

j + 1

)

for i ≤ j < n/2 − 1. Thus we may bound the sum in (33) by the sum of a geometric
series,

∑
0≤i≤ j

(
n

i

)
≤

∑
0≤i≤ j

(
j + 1

n − j

) j−i+1 (
n

j + 1

)

≤
∑
m≥1

(
j + 1

n − j

)m (
n

j + 1

)

= j + 1

n − 2 j − 1

(
n

j + 1

)
.

This inequality proves (33), and thus completes the proof that Rn,k is concave.

Appendix

Our goal in this appendix is to present enough classical circuit theory to allow the
reader to understand the problems and proofs in this paper. All the problems dealt
with in this paper concern networks of interconnected resistors. Such a network can be
regarded as a connected undirected graph (which may have multiple edges, but which
does not have self-loops) in which a strictly positive resistance is associated with each
edge.

A fluid called charge (measured in units of “coulombs”) flows through the edges,
driven by the difference in pressure (also called potential, measured in units of “volts”)
between the ends of each edge. The relationship between the potential difference
across an edge and the current (rate of flow) through the edge (measured in units
of coulombs/second, also called “amperes”) is given by Ohm’s law: the potential dif-
ference across an edge is equal to the current through the edge times the resistance
of the edge (measured in units of volts/ampere, also called “ohms”). Ohm’s law de-
termines the local relationship between current and potential difference at each edge.
The global relationship is determined by Kirchhoff’s laws. Kirchhoff’s voltage law
says that if we consider any two paths between two given vertices, the sums of the po-
tential differences across the edges along each path are equal (or equivalently, the sum
of the potential differences across the edges around any cycle is zero). This law allows
us to assign potentials to the vertices of the graph by arbitrarily assigning a potential
to one vertex, then using the sums of potential differences along paths to assign a po-
tential to each other vertex. (The connectedness of the graph ensure that this procedure
assigns a potential to each vertex, and Kirchhoff’s voltage law ensures that the result
is independent of the paths chosen. The potential differences assigned to vertices are
thus determined up to an arbitrary additive constant.) Kirchhoff’s current law says that
the sum of the currents flowing into each vertex (with negative signs for the currents
flowing out) is zero. This is consistent with our understanding of current as measuring
the rate of flow of a fluid.

Consider the problem of assigning potentials and currents to a graph (in which
resistances are already specified) in a way that satisfies all of these laws. All of the
constraints specified by Ohm’s and Kirchhoff’s laws are linear, and an obvious solution
is that all currents and potential differences vanish. This is in fact the unique solution:
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if the potentials assigned to the vertices were not all equal, we could find a vertex with
the minimum potential connected by an edge to a vertex with strictly larger potential.
By Ohm’s law, a strictly positive current would flow through this edge into the vertex,
but no current could flow out of it, contradicting Kirchhoff’s current law.

To obtain non-vanishing currents and potential differences, we consider current ex-
citations (or simply excitations), whereby Kirchhoff’s current law may violated at each
vertex by specifying a current flow from an external source into each vertex (with neg-
ative signs for currents flowing out), subject to the condition that the sum over all
vertices of these external currents is zero. Suppose the graph contains n vertices. With
such an excitation, there will be n − 1 currents (since the specification of the external
current into any n − 1 vertices determines that into the last) determining n − 1 vertex
potentials (since the potential of one vertex can be chosen arbitrarily). The potentials
are determined from these currents by linear equations, and the solution will be unique
(since the solution to the homogeneous version of the problem, considered in the pre-
vious paragraph, is unique).

Given two vertices in a network, we consider the excitation for which a current of
1 ampere flows into one of the vertices and a current of 1 ampere flows out of the
other. We define the effective resistance of the network between these vertices to be
the potential difference between the two vertices with this excitation. We observe that
for a graph containing just two vertices, with one edge between them, the effective
resistance between these vertices is equal to the resistance of the edge. Thus, if we
think of the network as being encased in a “black box”, so that we only have access
to it through these two vertices, the network behaves in the same way as a single edge
between the two vertices, with the resistance of this edge being the effective resistance
of the network between the given vertices.

There are two special cases that allow the calculation of effective resistance to be
simplified. One is when networks are connected “in series”; that is when each edge
in a chain of edges is replaced by a network. In this case, the effective resistance be-
tween the endpoints of the chain is the sum of the effective resistances of the networks
between their points of attachment. The other is when several networks are connected
“in parallel”; that is, when each edge in a multiple edge between two vertices is re-
placed by a network. In this case, the reciprocal of the effective resistance between the
endpoints of the multiple edge is the sum of the reciprocals of the effective resistances
of the networks.

Since the relationship between the currents in an excitation and the resulting po-
tential differences is linear, we may use the principle of superposition: if a network is
subjected to a sum of several excitations, the resulting potential differences and cur-
rents are the sums of those resulting from the individual excitations.

Finally, we may often exploit the symmetries of a network to facilitate the calcu-
lation of resistances. Suppose there is a one-to-one mapping of the vertices and edges
of the graph that preserves the incidence relation between vertices and edges and the
assignment of resistances to edges. Suppose further that network is subjected to an
excitation that is also invariant under this mapping. Then the potentials assigned to
corresponding vertices must be equal, and thus currents through and potential differ-
ences across each edge will be unchanged if these corresponding vertices are identified
into a single vertex.
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The term inverse problem names a class of mathematical problems in which one at-
tempts to recover complete information from partial information. A Cayley graph is an
example of partial information about a group, typically displayed visually. Can we re-
cover, from that partial information, the multiplication table for the group? The astute
reader, instinctively visualizing the Cayley diagrams which are frequently introduced
in an introductory course in group theory, may wish to leap ahead with an answer of
“Yes!”. But in this paper we are concerned with Cayley graphs, as opposed to Cayley
diagrams which are in fact directed graphs (called, for short, Cayley digraphs), and
Cayley graphs, generally, convey less information than do Cayley digraphs.

Cayley diagrams and graphs are named for Arthur Cayley (1821–1895), the British
barrister-turned-mathematician who is credited (by Kleiner in this MAGAZINE [11])
with being the first to give the abstract definition of a finite group. In a paper published
in 1854, [4], Cayley defined a finite group as a set, G = {1 = g1, g2, . . . , gn}, together
with a binary operation, closed on G, satisfying the group axioms:

• Closure: For all a, b ∈ G, the product ab belongs to G.
• Associativity: For all a, b, c ∈ G, a(bc) = (ab)c.
• Right and left multiplication by an element in G are both permutations of G: For

each a ∈ G the set of right multiples Ga = {ga | g ∈ G} is G itself, and similarly
aG = G.

The first two axioms are familiar to anyone who has studied group theory. The
reader will note that Cayley assumed that the set G came equipped with a two-sided
identity 1 ∈ G, and that our current formulation of the axiom requiring that every ele-
ment of G have an inverse in G is a consequence of Axiom 3. Consequently, Cayley’s
definition is equivalent to the usual one.

The Cayley diagrams we are familiar with are actually digraphs with labeled edges,
invented by Cayley to aid in visualizing a group’s structure. Starting with a group G,
Cayley began by assigning each element of G to a vertex. Next, he selected a set S of
generators for G and drew a directed edge between g and h whenever there was some
generator s ∈ S such that h = gs. These edges were labeled or colored to indicate the
association with the particular generator s. These edge-colored digraphs were known
to determine the table for the group operation, as long as the vertex representing the
group identity was identified. The references direct readers to additional treatments of
Cayley digraphs, both simple [3, 7] and detailed [9].

In this paper, we visualize groups using undirected graphs, based on a similar prin-
ciple. Historically, these graphs have been called Cayley graphs in Cayley’s honor.

Math. Mag. 83 (2010) 347–358. doi:10.4169/002557010X529761. c© Mathematical Association of America
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The term Cayley graph first began to appear in the literature in the early 1960s, and
Sabidussi was one of the first, if not the first, to use the term [13]. Cayley graphs in-
terest graph theorists because they have lots of symmetry, and they occur frequently
in the literature on applications which involve computer networks or expander graphs.
These applications, however, will not be our focus.

To construct a Cayley graph, we modify Cayley’s construction. Following him, we
take the set of elements of the group as the vertex set. Cayley used a directed edge from
g to h to mean that you can get from g to h by right multiplication using s ∈ S. To
define an undirected graph we need every connection to go back the other way, and for
that we need s−1 ∈ S. From now on we require that S be inverse-closed, meaning that
it contain the inverse of all of its elements. On the other hand, unlike Cayley, we will
not require that S generate the entire group. We also want to exclude the possibility of
edges from a vertex to itself, so S must not contain the identity element of G. We call
any nonempty subset S of G a Cayley set, provided S is inverse-closed and 1 /∈ S.

DEFINITION. Let G be a group and let S be a Cayley set of G. Let Cay(G, S) be
the graph with vertex set VG = G. Whenever g, h ∈ G and there exists an element
s ∈ S such that h = gs, vertices g and h are connected with an edge, which we denote
by g ∼ h. The graph Cay(G, S) is a Cayley graph for G.

The edges in the Cayley graph for a group G are not directed edges, and it may
happen that the Cayley set S is not a generating set. In general, a Cayley graph for
a group G contains less information than does the Cayley digraph. How much has
been lost? Is there an undirected analogue of the Cayley digraph that determines the
multiplication table for the group? Answering this question is the goal of our paper.

When we no longer require that S be a generating set for G the number of pos-
sible Cayley graphs for G increases, and a particular Cayley graph might not be con-
nected. In fact, for any group, there are as many Cayley graphs as there are Cayley
subsets. FIGURE 1 gives two different Cayley graphs for Z12, the group of integers
under addition modulo 12. The reader should check that the sets {4, 8} and {2, 10} are
inverse-closed, and that the associated Cayley graphs are not isomorphic.
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Figure 1 Cay(Z12, {4, 8}) and Cay(Z12, {2, 10}).

For any group G of order n, the set S = G − {1} is a Cayley set, and the associated
Cayley graph Cay(G, S) is graph-isomorphic to Kn, the complete graph on n vertices,
in which each vertex is adjacent to every other vertex. Any two groups of the same
order may be represented by this particular Cayley graph, so when we use Kn as a
Cayley graph to represent our group, almost all the information about the group has
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been lost. What if we colored the edges of Kn to indicate their association with a
particular Cayley set? The principle is simple: every nontrivial element g ∈ G is an
element of some unique smallest Cayley set Cg. That set will be either a singleton or a
doubleton set: if g = g−1, then Cg = {g}, otherwise g �= g−1, and then Cg = {g, g−1}
contains exactly two elements.

Observe that the collection A = {Cg | g ∈ G, g �= 1} forms a partition of the Cay-
ley set S = G − {1}. Assign a unique color to each Cayley set Cg in A. In the complete
Cayley graph Cay(G, S), we color each edge according to the color associated with its
Cayley set in A. We call resulting graph the complete colored Cayley graph associated
to a group G.
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Figure 2 An example of a complete colored Cayley graph

Given the list {1 = g1, g2, . . . , gn} of elements G (with the identiy specified) and
the complete colored Cayley graph of G, to what extent can we reconstruct the multi-
plication table of G? That is the question that we will address in this article.

Determining the multiplication table FIGURE 2 shows an example of a complete
colored Cayley graph, where different line styles indicate the colors of edges. What,
if anything, does this complete colored Cayley graph tell us about the group op-
eration? The identity element, 1 ∈ G, is given in the statement of the problem it-
self when we assume G is given as the set G = {1 = g1, g2, g3, . . . , gn}. Using this,
we may identify any Cayley set as the set of elements immediately adjacent to the
identity via edges of the same color. For example in FIGURE 2, the Cayley sets are
{g3}, {g2, g4}, {g5, g7}, {g6, g8}. The involutions of the group (elements of order two)
are the only elements that appear in singleton Cayley sets, so these elements of G are
determined by the complete colored Cayley graph. Since for any element g ∈ G of
order larger than two, g−1 is the only element paired with g in doubleton Cayley set,
the complete colored Cayley graph determines inverses. In particular, in FIGURE 2,
g3 is the only involution, g−1

2 = g4, and the solid edges represent multiplication by
g±1

2 . By following these solid edges we see that for a = g2, we have a2 = g3, and
a3 = g4 = a−1. An easy induction argument shows that, for any a ∈ G, the powers of
a are determined by the complete colored Cayley graph. We will begin tackling our
key question, “What can we say about the multiplication table for this group?”, by
determining the powers of the elements given in the vertex set.

We’ve seen that element g2 generates a subgroup of order 4, and we observe that the
same is true of g8 and of g5 by following the dotted and “=” edges respectively. We
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also note that g2
2 = g3 = g2

8 = g2
5 , g3

2 = g4, g3
8 = g6, and g3

5 = g7. As noted before,
there is one element, g3, which has order two.

The wavy edge corresponds to multiplication by the involution, g3. Geometrically
this means that there is only one wavy edge emanating from a vertex, so following
that edge, say, leading from g2 to g4 tells us that g2g3 = g4. This illustrates a general
principle: multiplication by an involution is never ambiguous, but is always determined
by the Cayley data.

Things get more complicated when we try to compute g2g8. Right multiplication
by g8 is represented by dotted edges. There are two vertices that we can reach from
g2 via dotted edges, g5 and g7, so we conclude that either g2g8 = g5 or g2g8 = g7.
Similarly, following the double edges we see that there are two possibilities, g2g5 = g8

or g2g5 = g6. These possibilities are tabulated in TABLE 1.

TABLE 1: An attempt at filling in the multiplication table

∗ 1 g2 g4 g8 g6 g5 g7 g3

1 1 g2 g4 g8 g6 g5 g7 g3

g2 g2 g3 1 g5 or g7 g7 or g5 g6 or g8 g8 or g6 g4

g4 g4 1 g3 g7 or g5 g5 or g7 g8 or g6 g6 or g8 g2

g8 g8 g7 or g5 g5 or g7 g3 1 g2 or g4 g4 or g2 g6

g6 g6 g5 or g7 g7 or g5 1 g3 g4 or g2 g2 or g4 g8

g5 g5 g8 or g6 g6 or g8 g4 or g2 g2 or g4 g3 1 g7

g7 g7 g6 or g8 g8 or g6 g2 or g4 g4 or g2 1 g3 g5

g3 g3 g4 g2 g6 g8 g7 g5 1

Using reasoning that will be familiar to anyone who has worked on sudoku puzzles,
where each symbol can appear exactly once in each row and each column, we can
go farther. Suppose g2g8 = g5; then necessarily g2g6 = g7. Further, g2g5 = g2g2g8 =
g3g8 = g6, and then it must follow that g2g7 = g8. This completes the g2 row. Multi-
plication in the g4 column may be filled in by noticing that g4 = g−1

2 . This, along with
(g8g4)

−1 = g2g6 = g7, as was determined previously, tells us that (g8g4) = g−1
7 = g5.

Continuing in this way, the assumption that g2g8 = g5 allows us to complete the entire
multiplication table.

The reader should verify that the alternative possibility that g2g8 = g7 allows the
completion of a different multiplication table—one that is the transpose of the first.
Which table is the correct one? There does not appear to be any way to resolve these
questions, but is this because there is not enough information in the complete colored
Cayley graph, or because we have not been clever enough? For which groups, if any,
can we do better? Moreover, is this the worst that could happen? Will we always be
able to determine the table for the group operation, up to its transpose?

Our second example is shown in FIGURE 3. Here, and later on, it will be conve-
nient to draw the colored Cayley graph fragments separately. We will refer to such a
collection as the complete collection of colored Cayley graphs.

FIGURE 3 shows the complete collection of colored Cayley graphs for S3, the sym-
metric group on three elements. Let’s review what we’ve learned about mining these
graphs for information. The identity element is given. The elements immediate adja-
cent to the identity 1 are the elements of the associated Cayley set, so we see imme-
diately that the Cayley sets are {g2, g3}, {g6}, {g4}, and {g5}, respectively, in clockwise
order from the upper left-hand graph. By following successive edges in different Cay-
ley graphs, one can see, for example, that the product g2g5 = g4, because g4 is adjacent
to g2 in the graph whose Cayley set is {g5}, and so on.
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Figure 3 The colored Cayley graphs for S3

We can’t calculate g4g2 directly, because multiplication by g2 and its inverse is rep-
resented by double edges, and g4 is adjacent to both g5 and g6 in the Cayley graph
with double edges. Either g4g2 = g5 or g4g2 = g6. Our prior experience suggests ex-
amining the inverse, and indeed, (g4g2)

−1 = g−1
2 g−1

4 = g3g4, and the latter product is
easy to calculate in the Cayley graph with wavy edges, corresponding to the Cayley
set {g4}, leading to the conclusion that g4g2 = g−1

5 = g5.
The correspondence g2 = (123), g3 = (231), g4 = (23), g5 = (13) and g6 = (12)

assigns the elements in the vertex set their traditional meaning as permutations. It is
worth taking the time needed to convince yourself that, in this case, the entire mul-
tiplication table is determined by the complete collection of colored Cayley graphs,
without resorting to any of the information given above concerning the representation
of any element gi as a particular permutation.

Here is a summary the general method: to compute ab from the Cayley data, iden-
tify the color of edges associated with multiplication by b±1. Using these edges alone
we focus on the set of elements adjacent to a, called the neighborhood of a, N (a),
in Cay

(
G, {b, b−1}). If b = b−1, then N (a) = {ab}, and ab has been computed. If

b �= b−1, then N (a) = {v, w}, one of v and w is ab, and one is ab−1, and the whole
problem revolves around distinguishing which is which. Now we can formulate our
two questions:

QUESTION 1. Does the complete colored Cayley graph for a group G suffice to
determine the multiplication table for G?

It turns out that that the answer to question 1 is usually yes, but not always! A group
whose multiplication table cannot be determined from its complete colored Cayley
graph will be called an ambiguous group. We will be able to classify these. The answer
will involve the idea of an opposite group, hence the title of this article. We will see
that ambiguous groups are groups that cannot be distinguished from their opposites
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using the complete colored Cayley graph. We will define the opposite group a little
later.

Before we move on, we pose our second question:

QUESTION 2. Does the complete colored Cayley graph for a group G suffice to
determine the isomorphism class for the group?

The answer is surprising, and we postpone it until the very end of the paper.
The process of answering these questions affords a glimpse into the work of

three mathematicians: the Irish mathematician, physicist, and astronomer, Sir William
Rowan Hamilton (1805–1865); the German algebraist and number theorist Richard
Dedekind (1831–1916); and the German algebraist Reinhold Baer (1902–1979).

Opposite groups and their graphs For any group, the transpose of the table for the
binary operation defines an operation that satisfies all of the group axioms, but, unless
G is abelian, this new operation is different from the original operation. Because the
multiplication is accomplished in the opposite order from the multiplication in G,
mathematicians call this new group, G•, the opposite group. Denoting multiplication
in G• by •, we have a • b = ba. Observe first that, if G is nonabelian, then G and
G• have different operations, and second that the inversion map, φ : g �→ g−1, is an
isomorphism from G to G•. Moreover this map fixes Cayley sets, that is φ(S) = S
whenever S is a Cayley set of G.

Since for all g ∈ G, gg−1 = g−1g = 1G , any Cayley set S for G must be a Cayley
set for G•. It is natural to compare Cay(G, S) with Cay(G•, S). FIGURE 4 exhibits
colored Cayley graphs for a group and its opposite group. The example uses the sym-
metric group on three elements, and Cayley set {(123), (231), (23)}.
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Figure 4 Two colored Cayley graphs, one for a group and the other for its opposite

You will note that in the left-hand graph (13) is adjacent via dotted edges to (231),
while this pair is not adjacent in the right-hand graph. Instead, in the right hand graph,
(13) is adjacent via dotted edges to (231)−1. The reader should verify that the inversion
map φ fixes Cayley sets, and that it induces a graph isomorphism φ : Cay(G, S) ∼=
Cay(G•, S). This illustrates the rather subtle difference: like the groups, the graphs are
not ordinarily equal, but are always isomorphic.

Although the Cayley graphs for G and G• are different, it is nevertheless true that
the complete colored Cayley graph for G determines the complete colored Cayley
graph for G•. First, it is easy to verify that S is a Cayley set of G if and only if S is
a Cayley set of G•. Second, the vertices of Cay(G, S) and the vertices of Cay(G•, S)

are the same set, G. Third, the fact that inversion is a graph isomorphism between
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the graphs Cay(G, S) and Cay(G•, S) tells us that a ∼ b in Cay(G, S) if and only
if b−1 ∼ a−1 in Cay(G•, S). Since both the edges of Cay(G, S), and all the inverse
pairs are given as part of the complete colored Cayley graph, the edges of Cay(G•, S)

are determined as well. The reader may want to use this principle and FIGURE 3 to
construct the complete colored Cayley graph for S3

•.

Ambiguity and the quaternions A simple algebraic formulation will help us char-
acterize the groups G for which Cay(G, S) = Cay(G•, S). We call a group G a bal-
anced group if, for all a, b ∈ G, either ab = ba or a2 = b2. Every abelian group is
balanced, but for a more interesting example of a balanced group, we consider quater-
nions. A group H is called a quaternion group if H is isomorphic to a group with
presentation

〈
a, b | a4 = 1 = b4, a2 = b2, bab−1 = a−1

〉
.

The correspondence a = i , b = j , ab = k represents H as the familiar group Q8 on
the set {±1, ±i, ± j, ±k} with group operation determined by i j = k, jk = i , ki = j ,
k j = −i , j i = −k, i2 = j2 = k2 = −1. We have seen the Cayley graphs for the
quaternion group already: the graph we discussed in the example of FIGURE 2 rep-
resents the quaternion group. The reader may want to verify this fact, using the assign-
ment i = g2, j = g8, k = g5.

The quaternion group was discovered in 1843 by Sir William Rowan Hamilton,
while he was searching for a way to, as he put it, “multiply vectors.” In a letter to
his son Archibald, he reported that the idea came to him in a flash on the 16th of
October in 1843, and in his excitement he was unable to “ . . . resist the impulse—
unphilosophical as it may have been—to cut with a knife on a stone of Brougham
Bridge, as we passed it, the fundamental formula with the symbols, i , j , k ; namely,
i2 = j2 = k2 = i jk = −1, which contains the Solution of the Problem . . . ” (The
entire text of this letter, available on-line, is worth reading [10].)

It is easy to verify that the quaternion group is balanced, and we invite the reader to
do so. The property of being balanced is important, because if a group G is balanced,
then each Cayley graph of G is actually equal, as a graph, to the corresponding Cayley
graph of the opposite group G•. The proof is not difficult, since we need only show
that, in a balanced group, a ∼ b if and only if a

•∼ b, where
•∼ denotes adjacency in

the opposite graph. We leave the proof as an exercise for the reader.
Now, note that if G is nonabelian, then the group operation table for G is different

from the table for G•. If, in addition, the complete colored Cayley graph for G is equal
to that of its opposite group, then G must be ambiguous. Consequently, any balanced,
nonabelian group is ambiguous. In particular, the quaternion group is ambiguous! This
explains our difficulties in constructing the multiplication table from FIGURE 2. We
could not differentiate between the table for G and the transposed table, the table for
G•. Note the contrast with our experience with S3. We saw from FIGURE 4 that the
colored Cayley graph for S3

• was different from that of S3, and we were successful
in recovering the multiplication table for S3 from the complete colored Cayley graph.
This is not accidental. In order for G to be ambiguous, there must be elements a, b ∈ G
such that we cannot determine ab from the complete colored Cayley graph for G. In
this case, we also say that the product ab is ambiguous. We will prove that the only
way that this may happen is when the subgroup generated by the elements a and b is
isomorphic to the quaternion group.

THE SUBGROUP THEOREM. If G is an ambiguous group, then there is a subgroup
H in G that is isomorphic to the quaternion group.
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Suppose that a and b have an ambiguous product in G. Note that we may assume
neither a nor b is involution, because the product of any element g by an involution x
is determined by the singleton neighborhood N (g) in Cay(G, {x}), for multiplication
by x on the right, and in the opposite graph for multiplication on the left. So when
ab is an ambiguous product, both {a, a−1} and {b, b−1} are Cayley sets containing two
distinct elements.

We will first establish three consequences of the ambiguity of the product ab. These
facts are inherently appealing consequences of the geometry of the Cayley graphs.
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Figure 5 Comparing N(a) in Cay
(
G, {b, b−1}) with N(b) in Cay

(
G•, {a, a−1}).

CONSEQUENCE 1. If ab is ambiguous, then a2 = b2.

Look at the two Cayley graph fragments in FIGURE 5. In this figure, the left frag-
ment occurs in Cay

(
G, {b, b−1}), while the right fragment occurs in the opposite graph,

Cay
(
G•, {a, a−1}). We have used the fact that the complete colored Cayley graph for

G determines the colored Cayley graphs for G•. Our labels of ab, ab−1, and a−1b on
vertices are correct, since we know the contents of the neighborhoods of a and b, but
in an actual graph we may not know which vertex goes with which label.
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Figure 6 A better picture.

What we really see are the neighborhoods of a and of b. These are depicted in FIG-
URE 6. Because neither a nor b is an involution, each neighborhood is a doubleton.
The element in common to both neighborhoods must be ab, unless the neighborhoods
intersect in two elements, in which case v = w, or ab−1 = a−1b. Since ab is ambigu-
ous, the latter case must hold, and neighborhoods must be equal. We conclude that
ab−1 = a−1b, which implies that a2 = b2.

CONSEQUENCE 2. If ab is ambiguous, then a4 = b4 = 1.

We examine the two graph neighborhoods illustrated in FIGURE 7.
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Figure 7 Comparing N(a) in Cay

(
G, {b, b−1}) with N(b−1) in Cay

(
G•, {a, a−1}).

In FIGURE 7, the left fragment uses the Cayley set {b, b−1}, while the right fragment
uses {a, a−1} in the opposite graph. This time, the element ab is the single element in
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N (a) that is not an element of N (b−1). But the ambiguity of ab implies there is no
such single element, hence we conclude that N (a) = N (b−1). But then, ab = a−1b−1

which implies a2 = b−2 = b2, from which it follows that b4 = 1 = a4.

CONSEQUENCE 3. If ab is ambiguous, then b−1ab = a−1.

Consider the neighborhood N (a) = {u, v} of a in Cay(G, {b, b−1}). In this Cayley
graph N (a) contains the ab and the element ab−1. Our problem is to decide which of
the elements u or v is ab. We do this by reasoning indirectly. We observe that a(ab) =
(a2)b = (b2)b = b−1, so that b−1 ∈ N (a) in the Cayley graph Cay(G, {ab, (ab)−1}).
This leads us to compare the neighborhood N (a) in Cay(G, {u, u−1}), with N (a) in
Cay(G, {v, v−1}). Assume, without loss of generality, that ab = u, and ab−1 = v.
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Figure 8 Comparing the neighborhoods Cay(G, {u, u−1}) and Cay(G, {v, v−1}).

We refer to the graph fragments in FIGURE 8, where the left fragment is from
Cay(G, {u, u−1}) and the right fragment is from Cay(G, {v, v−1}). Since b−1 = b3 and
b2 = a2, we can deduce that au = a(ab) = b−1 and av = a(ab−1) = b2b−1 = b. This
will determine the product ab: It is the element u, such that N (a) in Cay(G, {u, u−1})
contains b−1, as opposed to b itself. But ab is ambiguous, so determination by this
method must be flawed. In particular, it must be true that both neighborhoods are ex-
actly the Cayley set {b, b−1}. We conclude that a(b−1a−1) = b−1, and that a(ba−1) =
b. These two statements are equivalent, and each implies that b−1a−1 = a−1b, from
which we see that b−1ab = ab2 = a3 = a−1.

Now we can prove the Subgroup Theorem.

Proof. Suppose ab is an ambiguous product, and consider the subgroup H gener-
ated by {a, b}. Our previous analysis of the Cayley fragments showed us that a2 = b2,
a4 = b4 = 1, and that b−1ab = a−1. In addition, we might note that b /∈ 〈a〉, otherwise
ab would be a power of a, and ab would not be ambiguous.

We claim that 〈a〉 is a normal subgroup of H . Because H is generated by a and b,
it suffices to check conjugation by b. But we already know that b−1ab = a−1 ∈ 〈a〉.
Thus 〈a〉 is a normal subgroup of H .

Because b2 = a2 ∈ 〈a〉, the subgroup H consists of exactly two cosets: 〈a〉 and
〈a〉b. Thus H = {1, a, a2, a3} ∪ {b, ab, a2b, a3b}. Since b−1ab = a−1, H is non-
abelian.

Now, H is a group of order 8, and, up to isomorphism, there are two nonabelian
groups of order 8: the dihedral group D8 and the quaternion group Q8. The dihedral
group D8 has exactly 2 elements of order 4. In contrast, H has at least 3 elements of
order 4, namely a, a−1, and b. We conclude that H � D8 and that therefore H ∼= Q8.

Examples, Hamiltonian groups, and the larger picture

More may be said. We can prove a classification theorem for ambiguous groups that
tells us exactly what the structure of an ambiguous group must be. The answer involves
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groups in which every element except the identity element has order two, so that if the
group is finite it must be isomorphic to Z2 × · · · × Z2︸ ︷︷ ︸

n times

, n ≥ 1. Such a group is called

called an elementary abelian two-group.

THE CLASSIFICATION THEOREM. Every ambiguous group G is isomorphic to
Q8 or to a direct product of the quaternion group Q8 and an elementary abelian two-
group A. Conversely, every direct product Q8 × A is ambiguous. Multiplication in the
group A is determined by the complete colored Cayley graph for G. There are exactly
two multiplications for the set G that are consistent with the complete colored Cayley
graph, that of G and that of G•.

Readers interested in the details of the proof of the Classification Theorem should
consult [12]. The Classification Theorem gives us instant access to a method for differ-
entiating between ambiguous and nonambiguous groups: The following are ambigu-
ous: Q8, Q8 × Z2, Q8 × Z2 × Z2, Q8 × Z2 × Z2 × Z2 × Z2 × · · · × Z2. But Q8 × Z4,
Q8 × D8, Q8 × Z17, and Q8 × Q8 are not ambiguous!

You may find the above examples puzzling. How exactly can one resolve the appar-
ent ambiguity of (i, 1)( j, 1) in Q8 × Q8? The following example illustrates how an
unambiguous multiplication might be used to determine a product in an unambiguous
group in which Q8 is a direct factor. In order to communicate the key idea, we’ll make
the simplifying assumption that the elements of our groups are given as ordered pairs.

Let K be any group containing an element c of order four. How might we use
a Cayley graph method to determine the product (i, 1)( j, 1) from the complete col-
ored Cayley graph for Q8 × K ? The product (i, 1)( j, 1) = (i j, 1). The ambiguity in
question is that of determining the correct product i j in component one. Because the
complete colored Cayley graph for a group determines the order of any element in G,
we may unambiguously choose an element (1, c) ∈ Q8 × K of order 4. The element
(1, c2) is an involution of Q8 × K , and is determined by the complete colored Cayley
graph because it is a power of the element (1, c). Consider the products (i, 1)(1, c)
and ( j, 1)(1, c). These products are unambiguous, because multiplication of any el-
ement by 1 on either side is unambiguous. Using the element( j, c) produced by the
second multiplication, we may identify the Cayley set S = {( j, c), (− j, c−1)}, and its
corresponding colored Cayley graph. The neighborhood N

(
(i, c)

)
using Cayley set S

is shown below in FIGURE 9.
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Figure 9 Resolving apparent ambiguity in Q8 × K

The correct product i j will be found in the first component of the element in
N

(
(i, c)

)
whose second component is the involution c2 of K . We may identify c2,

because it is the second component of the element (1, c)2. This resolves the apparent
ambiguity.

A group with the property that every subgroup is normal is called Hamiltonian.
Dedekind, perhaps best known for his use of the Dedekind cut to prove the complete-
ness of the reals without the axiom of choice, and credited with the definition of the
term ideal, named these groups in honor of William Rowan Hamilton, the bridge-
carving discoverer of the quaternions. Dedekind’s discovery, in 1887, explains the ra-
tionale for the name: Every nonabelian Hamiltonian group must contain a subgroup
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isomorphic to a quaternion group [5]. Nearly fifty years later, in 1933, the German
mathematician Reinhold Baer completed the classification of nonabelian Hamiltonian
groups [1]:

BAER’S THEOREM. A nonabelian group G is a Hamiltonian group if and only if
G = Q8 × A × B, where A is an elementary abelian two-group and B an abelian
group with every element of odd order.

Comparing ambiguous groups with Hamiltonian Groups, and appealing to the Clas-
sification Theorem, we find that the ambiguous groups are precisely the nonabelian
Hamiltonian groups with no elements of odd order.

EXERCISE 1. Modify the technique used above to resolve ambiguity in Q8 × K
(using FIGURE 9) to find a complete colored Cayley graph method to determine the
product of (i, 0)( j, 0) in Q8 × Z5, a group that is Hamiltonian, but not ambiguous.

This brings us to our second question. Does the complete colored Cayley graph
for G determine its isomorphism class? If G is unambiguous, then by definition, the
multiplication table is determined, and so we know the isomorphism class of the group.

According to the classification theorem, any ambiguous group G has the form
Q8 × A, where A is abelian, and where for all a ∈ A, a2 = 1A. Consider elements
(g, a) and (h, b) in G, with g, h ∈ Q8 and a, b ∈ A. If gh = hg then (g, a) commutes
with (h, b). Otherwise, since Q8 is balanced, g2 = h2, and hence (g, a)2 = (g2, 1A) =
(h2, 1A) = (h, b)2, so G is balanced. Therefore, the complete colored Cayley graph
for G is the same as that of G•, and so the ambiguous groups are precisely those non-
abelian groups that cannot be distinguished from their opposites using the complete
colored Cayley graph.

Because the complete colored Cayley graph for G determines the data for G•, it
determines whether the complete colored Cayley graphs for G and for G• are identical.
Suppose G is such a group. Then G is ambiguous, and there are exactly two possible
tables for G, that of G itself and that of G•. Either one of these tables produces a group
isomorphic to G, so the isomorphism class is for G is determined. This shows us that
the answer to Question 2 is yes, the complete colored Cayley graph for the group does
determine its isomorphism class. Given that we lost information about the direction of
the edges when we moved from the directed Cayley digraph to the undirected Cayley
graph, it may not be surprising that we encounter ambiguity. What is surprising is that
the only information that is lost is the ability to differentiate between opposites.
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In 2006 my wife and I accompanied our church’s youth group on a mission trip to
Traverse City, Michigan, where youth from the host church introduced us to the “Yell
Game.” Players stand in a circle, close their eyes, and on the count of three, open their
eyes, looking directly at another player. If two players are looking directly at each
other, they yell and are out of the game. We watched a game begin with about 25
people. For three consecutive rounds, nobody yelled; no two people ever looked up at
each other.

What is the probability of this happening? To answer this question we need a prob-
abilistic model. We will assume that each person is equally likely to look at any other
person in the circle, and the looks are independent in the sense that knowing that
Parker looks at Paige will not affect the probability that Linda (or Paige) looks at any-
one else playing the game. (These assumptions might not be true in an actual game—
especially if the group contains a boyfriend and girlfriend who long to gaze in each
other’s eyes!)

Some time later, while skimming journals that were circulating in my department, I
discovered the article “Look Up and Scream: Analytical Difficulties Resolved!” writ-
ten by S. P. Bhatia [2] which cited Balas and Connor for introducing the game, which
they called “Look Up and Scream” [1]. In both of these articles, the authors assume
an even number of players. Balas and Connor [1] show how to represent the game
with a function, and give numerical results for the number of yells based on exhaustive
searches. Bhatia [2] represents a round of the game with a digraph and gives a formula
for the number of ways a round of the game can be played with no yells, and thus the
probability that no yells occur. (In addition to the unconstrained game, both [1] and [2]
consider a variation of the game in which each player must look at a player to the im-
mediate right, immediate left, or across the circle. We do not address these variations
here.)

In this paper we extend these results by allowing an arbitrary number of players,
and we present a formula giving the number of ways a round can be played with y
pairs of yells. Our derivation of the formula for no yells differs from the derivation in
[2]. Finally, we derive formulas for the mean and variance of the number of pairs of
yells in two different ways, and show how to calculate the mean number of rounds of
an n-player Look Up and Scream game.

Inclusion-exclusion The principle of inclusion-exclusion tells us that the number of
elements in the union of finite sets A1, A2, . . . , An is
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|A1 ∪ A2 ∪ · · · ∪ An|
=

∑
1≤i≤n

|Ai | −
∑

1≤i< j≤n

|Ai ∩ A j |

+
∑

1≤i< j<k≤n

|Ai ∩ A j ∩ Ak| − · · · + (−1)n+1|A1 ∩ A2 ∩ · · · ∩ An|.

If S is a larger set containing the union of these sets, then the number of elements of S
that appear in none of the sets {Ai } is

|S| − |A1 ∪ A2 ∪ · · · ∪ An|
= |S| −

∑
1≤i≤n

|Ai | +
∑

1≤i< j≤n

|Ai ∩ A j |

−
∑

1≤i< j<k≤n

|Ai ∩ A j ∩ Ak| + · · · + (−1)n|A1 ∩ A2 ∩ · · · ∩ An|. (1)

We use a generalization that counts the number of elements that appear in exactly m
of the sets. Let Sk = ∑ |Ai1 ∩ Ai2 ∩ · · · ∩ Aik | where the sum is taken over all possible
selections of k of the n sets. Then the number of elements that appear in exactly m of
the sets is

Em = Sm −
(

m + 1

1

)
Sm+1 +

(
m + 2

2

)
Sm+2 − · · · + (−1)n−m

(
n

n − m

)
Sn. (2)

In particular if m = 0 and S0 = |S|, then we have the number of elements that appear
in no sets, so that (2) generalizes (1). For a proof of this result see [4, p. 400] or [5, pp.
276–277].

Combinatorial derivation of distribution of pairs of yells Let Ai, j be the set of
all rounds of n-player Look Up and Scream for which Player i and Player j look at
each other. Then Ai1, j1 ∩ Ai2, j2 ∩ · · · ∩ Aik , jk is the set of rounds where Player i1 yells
at Player j1, Player i2 yells at Player j2, . . . , and Player ik yells at Player jk . Note
for this intersection to be nonempty, all of the subscripts must be unique, and thus
k must be at most

⌊
n
2

⌋
. When all of the subscripts are unique, we already know at

whom 2k of the players look, and the other n − 2k players may look at anyone. Thus,
|Ai1, j1 ∩ Ai2, j2 ∩ · · · ∩ Aik , jk | = (n − 1)n−2k .

For a given k, how many of these intersections are there? To form one of these
intersections, we first select our 2k players in

( n
2k

)
ways. Then we select two of the 2k

players to match, select two of the remaining 2k − 2 players to match, and continue
to do this until the final two players are matched. Since we don’t care about the order
in which we create these matches, the number of ways to match these 2k players is
(2k

2 )(
2k−2

2 )···(2
2)

k! . Thus, the number of ways to form one of these intersections of k sets is
( n

2k)(
2k
2 )(

2k−2
2 )···(2

2)
k! . Noticing that one of the factorials in each of the denominators of the

binomial coefficients cancels with a factorial in the numerator of the next coefficient,
we can simplify this expression to n!

(n−2k)!k!2k . Thus,

Sk =
∑

|Ai1, j1 ∩ Ai2, j2 ∩ · · · ∩ Aik , jk |

=
∑

(n − 1)n−2k = n!
(n − 2k)! k! 2k

(n − 1)n−2k .

Let Dn,y be the number of ways a round of n-player Look Up and Scream can result
in exactly y pairs of yells. According to (2), Dn,y = Sy − (y+1

1

)
Sy+1 + (y+2

2

)
Sy+2 −
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· · · + (−1)n−y
( n

n−y

)
Sn; but for Sk to be nonzero, we must have k ≤ ⌊

n
2

⌋
, and thus

Dn,y = Sy −
(

y + 1

1

)
Sy+1 +

(
y + 2

2

)
Sy+2 − · · · + (−1)� n

2 �−y

( ⌊
n
2

⌋
⌊

n
2

⌋−y

)
S� n

2 �

=
� n

2 �−y∑
j=0

(−1) j

(
y + j

j

)
Sy+ j

=
� n

2 �−y∑
j=0

(−1) j

(
y + j

j

)
n!

(n − 2(y + j))! (y + j)! 2y+ j
(n − 1)n−2(y+ j )

=
� n

2 �−y∑
j=0

(−1) j n!
(n − 2(y + j))! y! j ! 2y+ j

(n − 1)n−2(y+ j ) (3)

Using (3), we produce TABLE 1, the first row of which is sequence A134362 in [6].

TABLE 1: Rounds of n-player Look Up and Scream with y pairs of yells

n players

y 2 3 4 5 6 7 8 9 10

0 0 2 30 444 7360 138690 2954364 70469000 1864204416
1 1 6 48 520 7170 119826 2347072 52629984 1327962060
2 0 0 3 60 1080 20790 443100 10496304 275093280
3 0 0 0 0 15 630 20160 614880 19145700
4 0 0 0 0 0 0 105 7560 378000
5 0 0 0 0 0 0 0 0 945

Recalling our assumptions that each person is equally likely to look at anyone else
and that these looks are independent, the probability of exactly y pairs of yells occur-
ring in a round of n-player Look Up and Scream is simply

P(n, y) = Dn,y

(n − 1)n
=

� n
2 �−y∑
j=0

(−1) j n!
(n − 2(y + j))! y! j ! 2y+ j

(n − 1)−2(y+ j ). (4)

Returning to the question asked on the Traverse City mission trip, if 25 people play the
game, then the probability of there being no matches for at least 3 consecutive rounds
is (P(25, 0))3 ≈ (.58063)3 ≈ 0.196, and thus this event was not too surprising.

Finally, the probability of playing a round of n-player Look Up and Scream and
there being no yells is

P(n, 0) =
� n

2 �∑
j=0

(−1) j n!
(n − 2 j)! j ! 2 j

(n − 1)−2 j

=
� n

2 �∑
j=0

(−1

2

) j

· 1

j ! · n(n − 1)(n − 2) · · · (n − 2 j + 1)

(n − 1)(n − 1)(n − 1) · · · (n − 1)
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For any fixed value j , the ratio of factors involving n converges to 1 as n approaches
infinity. Although in general we must be careful in interchanging limits and infinite
sums, we may do this for the sum above and thus,

lim
n→∞ P(n, 0) =

∞∑
j=0

(−1

2

) j

· 1

j ! · 1 = e−1/2 ≈ 0.607.

Hence, approximately 60.7% of the time, no one will yell in a round of Look Up and
Scream with many players.

Mean number of pairs of yells Let Yn be the number of pairs of yells in a round
of n-player Look Up and Scream. We claim that the mean number of pairs of yells
is E(Yn) = n

2(n−1)
. This makes sense intuitively since the probability any particular

person yells is 1
n−1 , and thus we expect approximately n

n−1 people to yell, which means
we have n

2(n−1)
pairs of yells. More formally,

E(Yn) =
� n

2 �∑
y=0

y · P(n, y)

=
� n

2 �∑
y=0

y
� n

2 �−y∑
j=0

(−1) j n!
(n − 2(y + j))! y! j ! 2y+ j

(n − 1)−2(y+ j )

= n

2(n−1)

� n
2 �∑

y=1

� n
2 �−y∑
j=0

(−1) j (n − 2)!
(n−2(y + j))! (y − 1)! j ! 2y+ j−1

(n − 1)−2(y+ j−1)

= n

2(n−1)

� n
2 �−1∑
ŷ=0

� n
2 �−ŷ−1∑

j=0

(−1) j (n − 2)!
(n−2−2(ŷ + j))! ŷ! j ! 2ŷ+ j

(n − 1)−2(ŷ+ j )

We now change the index of the inner summation by letting t = ŷ + j to get

E(Yn) = n

2(n − 1)

� n
2 �−1∑
ŷ=0

� n
2 �−1∑
t=ŷ

(−1)t−ŷ (n − 2)!
(n−2−2t)! ŷ! (t − ŷ)! 2t

(n − 1)−2t .

We are essentially summing over all {(ŷ, t)|0 ≤ ŷ ≤ t ≤ ⌊
n
2

⌋ − 1}. Interchanging the
order of the summation, moving terms that do not depend upon ŷ outside of the new
inner sum, and introducing a fancy 1 (in the form of t !

t ! ), we get

E(Yn) = n

2(n−1)

� n
2 �−1∑
t=0

(
1

2

)t (
1

n−1

)2t
(n − 2)!

(n−2−2t)! t ! (−1)t
t∑

ŷ=0

(−1)ŷ t !
ŷ! (t−ŷ)! .

Wearing our Binomial Theorem glasses, we recognize the inner sum as the expansion
of (1 − 1)t and thus it is equal to 0 unless t = 0. When t = 0, ŷ must also be 0, and
thus we see the double summation is simply equal to 1 and E(Yn) = n

2(n−1)
.

Variance of the number of pairs of yells The variance of a random variable X is
defined to be Var(X) = E((X − μ)2). A useful formula for finding the variance is
Var(X) = E(X (X − 1)) + E(X) − (E(X))2. We claim that the variance of the num-
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ber of pairs of yells is Var(Yn) = n(n−2)2

2(n−1)3 . First note,

E(Yn(Yn − 1)) =
� n

2 �∑
y=0

y(y − 1)P(n, y)

=
� n

2 �∑
y=2

y(y − 1)

� n
2 �−y∑
j=0

(−1) j n!
(n − 2(y + j))! y! j ! 2y+ j

(n − 1)−2(y+ j )

= n(n−2)(n−3)

22(n − 1)3

� n
2 �∑

y=2

� n
2 �−y∑
j=0

(−1) j (n − 4)!
(n−2(y + j))! (y − 2)! j ! 2y+ j−2

(n−1)−2(y+ j−2)

= n(n−2)(n−3)

4(n − 1)3

� n
2 �−2∑
ŷ=0

� n
2 �−ŷ−2∑

j=0

(−1) j (n − 4)!
(n−4−2(ŷ + j))! ŷ! j ! 2ŷ+ j

(n−1)−2(ŷ+ j ) (5)

Repeating the techniques from the last section, we can show E(Yn(Yn − 1)) =
n(n−2)(n−3)

4(n−1)3 by showing the double sum in (5) equals 1. Hence,

Var(Yn) = E(Yn(Yn − 1)) + E(Yn) − (E(Yn))
2

= n(n − 2)(n − 3)

4(n − 1)3
+ n

2(n − 1)
− n2

4(n − 1)2

= n(n − 2)(n − 3) + 2n(n − 1)2 − n2(n − 1)

4(n − 1)3

= n(2n2 − 8n + 8)

4(n − 1)3
= n(n − 2)2

2(n − 1)3

Mean rounds in n-player Look Up and Scream Since we can calculate the prob-
ability of y pairs of yells in n-player Look Up and Scream using (4), we can model
the game with a Markov chain. In fact, since the parity of the number of players never
changes, we will model the game with two Markov chains based on the parity. We
show how to model the game for even n ≤ 10, assuming the game ends when there are
0 players left, leaving odd and larger even values of n for the reader.

The transition matrix for this Markov chain with 6 states {0,2,4,6,8,10} is a 6 × 6
matrix where the entry in row i and column j is the probability that a game with
2(i − 1) players at the start of one round will have 2( j − 1) players at the completion
of the round. Thus, the transition matrix is⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 0 0 0 0 0
3

81
48
81

30
81 0 0 0

15
15625

1080
15625

7170
15625

7360
15625 0 0

105
5764801

20160
5764801

443100
5764801

2347072
5764801

2954364
5764801 0

945
3486784401

378000
3486784401

19145700
3486784401

275093280
3486784401

1327962060
3486784401

1864204416
3486784401

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

To compute the mean rounds of an n player game, we remove the first row and
column of the matrix above and call the new matrix A. Next we use MAPLE to find
B = (I − A)−1 where I is the 5 × 5 identity matrix:
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B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
16
17

27
17 0 0 0

8872
9367

12906
9367

3125
163 0 0

3559775872
3760766197

5269044276
3760766197

1047800000
663664623

823543
401491 0

42787599538135408
45201066366790867

63236169861007284
45201066366790867

12863607475700000
7976658770610153

8100991546508
4825564894501

129140163
60095555

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The entry of B in the row i and column j is the expected number of rounds with 2 j
players of a game beginning with 2i players. For example, a game beginning with 4
players is expected to have 16

17 rounds with 2 players. Thus, if we sum the entries in row
i , we get the expected number of rounds of a game beginning with 2i players. TABLE 2
gives the expected number of rounds of a game beginning with 2 to 10 players, rounded
to the nearest hundredth.

TABLE 2: Expected number of rounds of Look Up and Scream

# of players 2 3 4 5 6 7 8 9 10

Expected # of rounds 1 1.33 2.53 2.96 4.22 4.69 5.98 6.48 7.79

Alternative derivation of mean and variance In undergraduate probability courses,
students usually learn the formulas for the mean and variance of a linear combina-
tion of independent random variables. Namely, if X1, X2, . . . , Xn are n independent
random variables with means μ1, μ2, . . . , μn and variances Var(X1), Var(X2), . . . ,

Var(Xn) and Y = ∑n
i=1 ai Xi , then μY = ∑n

i=1 aiμi and Var(Y ) = ∑n
i=1 ai

2 Var(Xi ).
Although the formula for the mean holds if the Xi ’s are not independent, the for-
mula for the variance does not hold. The more general formula for the variance is
Var(Y ) = ∑n

i=1 ai
2 Var(Xi ) + 2

∑∑
i< j ai a j Cov(Xi , X j ) where Cov(Xi , X j ) is the

covariance of Xi and X j and is defined to be Cov(Xi , X j ) = E((Xi − μi )(X j − μ j ))

(see [3, p. 421]).
Play a round of n-player Look Up and Scream and let Xi equal 1 if Player i yells and

0 if Player i does not yell. Then the number of pairs of yells Yn equals X1+X2+···+Xn
2 .

Note the probability person i yells is 1
n−1 , the probability that the person at whom

person i looks decides to look at person i . Thus, each Xi is a Bernoulli random variable
with probability of success p = 1

n−1 , and thus mean 1
n−1 and variance 1

n−1

(
1 − 1

n−1

) =
n−2

(n−1)2 . Using this relationship between Yn and the Xi ’s, we can easily derive the mean
number of pairs of yells to be

E(Yn) = E

(
X1 + X2 + · · · + Xn

2

)

= 1

2

(
E(X1) + E(X2) + · · · + E(Xn)

) = n

2(n − 1)
.

In order to derive the formula for the variance using this method, note that the Xi ’s
are not independent (for if we know that Player 1 yells and hence X1 = 1, then it
can’t be the case that Xi = 0 for all i �= 1). Thus, we must find Cov(Xi , X j ) and we
will use the shortcut formula Cov(Xi , X j ) = E(Xi X j ) − μiμ j to find the covariance.
Now note Xi X j = 0 unless both Player i and Player j yell in which case Xi X j = 1.
To find the probability that both Player i and Player j yell, we consider two cases,
depending on whether Player i and Player j look at each other. Given our assumption
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that the looks are independent, the probability Player i and Player j look at each other
is ( 1

n−1 )
2. The probability that Player i and Player j yell and are not looking at each

other is the probability Player i looks at a Player k distinct from Player j , multiplied
by the probability Player k looks at Player i , multiplied by the probability Player j
looks at a Player l distinct from Players i and k, multiplied by the probability Player l
looks at Player j , or n−2

n−1 · 1
n−1 · n−3

n−1 · 1
n−1 . Thus,

E(Xi X j ) =
(

1

n − 1

)2

+ n − 2

n − 1
· 1

n − 1
· n − 3

n − 1
· 1

n − 1

=
(

1

n − 1

)2 (
(n − 1)2 + (n − 2)(n − 3)

(n − 1)2

)
.

Hence,

Cov(Xi , X j ) =
(

1

n − 1

)2 (
(n − 1)2 + (n − 2)(n − 3)

(n − 1)2

)
−

(
1

n − 1

)2

= (n − 2)(n − 3)

(n − 1)4
.

Finally, using the fact that Xi ’s are identically distributed, we get

Var(Yn) = n

4
Var(Xi ) + 2

(n
2

)
4

Cov(Xi , X j )

= n

4

n − 2

(n − 1)2
+ n(n − 1)

4

(n − 2)(n − 3)

(n − 1)4

= n(n − 2)

4(n − 1)3
[(n − 1) + (n − 3)]

= n(n − 2)2

2(n − 1)3
.

Connections to other mathematical structures and applications A round of n
player Look Up and Scream can be modeled by various mathematical structures, with
a pair of screams corresponding to properties of these structures. Thus, the probability
distribution of the number of pairs of screams corresponds to the probability distribu-
tion of properties in these structures.

First, recall Balas [1] presents a way to represent the game with a function. In par-
ticular, there is a one-to-one correspondence between rounds of n-player Look Up and
Scream and functions on the integers {1, 2, . . . , n} with no fixed points. Each player
who screams in a round of the Look Up and Scream Game corresponds to a periodic
point of the function with least period 2.

Second, as mentioned earlier, Bhatia [2] presents a way to represent a round of
the game with a digraph. In particular, there is a one-to-one correspondence between
rounds of n-player Look Up and Scream and digraphs with n vertices, each with out-
degree 1. Each player who screams in a round of Loop Up and Scream corresponds to
a vertex v such that there is a path of length 2 starting and ending at v.

Finally, there is a one-to-one correspondence between rounds of n-player Look Up
and Scream and 0-1 matrices with exactly one 1 in each row and no 1’s on the main
diagonal (namely the adjacency matrices of the digraphs described above). Each player
who screams in a round of Look Up and Scream corresponds to a 1 on the main
diagonal of the square of this matrix.
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Bhatia [2] describes two applications of Look Up and Scream. The first involves di-
rectional antennas in a wireless network. Using a certain protocol, the antennas corre-
spond to players in Look Up and Scream, with each player who screams corresponding
to an antenna that can communicate with another antenna. The second involves peers
in a specially designed peer-to-peer system in which resources are shared between two
peers only if each peer has a resource that the other peer wants. A pair of players who
scream corresponds to an exchange of resources between two peers.

Acknowledgment The author thanks the First Presbyterian Church of Ashland for supporting the mission trip
to Traverse City that introduced him to Look Up and Scream and his wife for planning the mission trip.

REFERENCES

1. B. J. Balas and C. W. Connor, Look Up and Scream: Analytical difficulties in improv comedy, Journal of
Recreational Mathematics 33(1) (2004–2005) 32–38.

2. Swapnil P. Bhatia, Look Up and Scream: Analytical difficulties resolved! Journal of Recreational Mathematics
34(1) (2005–2006) 12–23.

3. Saeed Ghahramani, Fundamentals of Probability with Stochastic Processes, 3rd ed., Pearson Prentice Hall,
Upper Saddle River, NJ, 2005.

4. Ralph P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction, 5th ed., Pearson,
Boston, 2004.

5. Fred S. Roberts, Applied Combinatorics, Prentice Hall, Engelwood Cliffs, NJ, 1984.
6. Neil Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/

sequences/index.html.

Summary In the game Look Up and Scream, players stand in a circle, close their eyes, and on the count of
three, open their eyes, with each player looking directly at another player. If two players look directly at each
other, they scream and are out of the game. In this paper, the author derives a formula for the probability that
there are y pairs of yells when n people play a round of the game. Using this formula, the author derives formulas
for the mean and variance of the number of pairs of yells and demonstrates how to calculate the mean rounds
a game will last when starting with n players. The author also presents alternative derivations for the mean and
variance of the number of pairs of yells.

Solving the Noneuclidean Uniform Circular
Motion Problem by Newton’s Impact Method

ROBERT L . LAMPHERE
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Sir Isaac Newton used a polygonal approximation method to show that the magnitude
of the centripetal force that a particle experiences when uniformly revolving around a
circle is

−mv2

r
, (1)

where m is the particle’s mass, v its uniform velocity, and r the circle’s radius. In this
note we use the same polygonal approximation method to prove that in noneuclidean
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(hyperbolic) geometry the magnitude of the centripetal force for a particle revolving
uniformly around a circle of radius r on a hyperbolic plane of curvature −1 is

− mv2

tanh r
. (2)

In an earlier work [3], we used Newton’s dynamic argument to prove (2). In that proof
we used Galileo’s basic law of falling bodies. In this paper we prove (2) simply by
paralleling Newton’s proof [2, p. 47] of (1), in current mathematical notation. Newton’s
proof consists of replacing the circular path by a n-sided regular polygon as shown in
FIGURE 1(a). As the particle travels along this polygonal path, it repeatedly collides
elastically with the circle, resulting in a impulsive force acting on the particle, a force
directed towards the center of the circle. Newton computes the sum of these forces and
then he lets the number of sides of the polygon increase to get (1). It is to be noted
that all the geometric theorems, except for the Law of Cosines, that are employed
in deriving (1) come from absolute geometry, the set of theorems that follow from
Euclid’s postulates other than the parallel postulate.

We want to show that the noneuclidean uniform circular motion problem can be
solved with the same methods that Newton used to solve the same problem in Eu-
clidean space.

In our proof of (2), we assume, since we cannot conduct noneuclidean experiments
in Euclidean space, that Newtonian mechanics holds in any infinitesimal region of an
noneuclidean plane. This is a reasonable assumption to make because an infinitesimal
neighborhood of any point on a noneuclidean plane is euclidean [1, pp. 111 and 152]. It
follows from this assumption, that we can prove (2) using the same physical arguments
that Newton used to prove (1).

The geometry Before proving (2), we give some geometric results needed in our
proof. Noneuclidean and Euclidean geometries share many theorems and constructions
—everything except those that depend on the parallel postulate. The common ground
among the geometries is called absolute geometry. For example, the theorem that a
tangent to a circle is perpendicular to the circle’s radius at the point of contact is a
theorem of absolute geometry. So too is the side-angle-side congruency theorem. An
example of a common construction is inscribing various regular polygons within a
circle. These two theorems and this construction from absolute geometry, which are
used to prove (1), can be used to prove (2).

The Law of Cosines can be used to prove (1), but that law depends on the parallel
postulate. In hyperbolic geometry the Law of Cosines takes the form [1, pp. 102–104]

cosh(BC) = cosh(AB) cosh(AC) − sinh(AB) sinh(AC) cos α,

where BC, AB, and AC are the lengths of the sides of the triangle ABC and α = ∠BAC,
which is different from the Euclidean form.

In our proof of (2), we use this hyperbolic law, which is the only difference between
our proof and Newton’s.

Proof by impact. To begin the proof, we first replace the circular path by an n-sided
regular polygon path as shown in FIGURE 1(a), thus replacing the continuous motion
by one with n collisions. This polygonal path is inscribed in the fixed circle of radius
r centered at S. Let BC and CD be any two adjacent sides of the inscribed polygon.
Draw EF tangent to the circle at C . Since triangles SCD and SCB are congruent and
EF ⊥ SC, ∠BCF = ∠DCE.

Why would a sequence of elastic collisions produce such a path? We base our rea-
soning on the assumption that Newtonian mechanics holds within the infinitesimal
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Figure 1 Particle P collides with the hyperbolic circle at C

region where the collision occurs. If the particle collides elastically with the circle at
C , it is reflected off the tangent EF at C in such a way that ∠BCF (incident angle) is
equal to the angle of reflection and it has a rebound speed of v. But ∠BCF = ∠DCE,
thus making ∠DCE the reflection angle. Therefore, the particle will be reflected along
CD with speed v. The same argument equally applies to the other collision points. This
shows that the particle will continue to travel along the regular polygon’s perimeter of
FIGURE 1(a) with constant speed v after each collision.

Next we compute the force that the particle experiences when colliding with the
circle at C . Again recall that Newtonian mechanics is assumed to hold in any in-
finitesimal region about point C (FIGURE 1(b)). Before colliding with the circle, the
particle’s linear momentum, relative to the rectangular axes CS and CE, is 
MBC =
(mv sin θ, mv cos θ), and after the collision it becomes 
MC D = (−mv sin θ, mv cos θ)

where θ = ∠BCF. Therefore, the particle’s total change of momentum, denoted by
� 
℘, is given by � 
℘ = 
MC D − 
MBC = (−2mv sin θ, 0). Note that � 
℘ points inward
along the radius. Now let 
F be the force that the particle experiences while colliding
with the circle, a force that acts for a very short time duration �t . By Newton’s sec-
ond law of motion, we have � 
℘ = 
F�t , and so 
F�t = (−2mv sin θ, 0). The name
impulse is given to the product 
F�t and its magnitude is given by

f �t = −2mv sin θ, (3)

where f denotes the magnitude of the force 
F . It follows from the direction of � 
℘
that the direction of the force f is toward the circle’s center S along the radius SC .

Let �s = BC and ϕ = ∠SCB. Then applying the hyperbolic Law of Cosines to
triangle SCB,

cosh r = cosh r cosh(�s) − sinh r sinh(�s) cos ϕ. (4)

Since SC ⊥ EF, we have ϕ = π

2 − θ . Therefore, (4) can be rewritten, with the help of
the half-angle formulas for hyperbolic trigonometric functions, as

sin θ = sinh �s
2

tanh r cosh �s
2

.
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Next, substituting the last equation into (3) and rewriting, we find

f �t = −m
v�s

tanh r

⎛
⎜⎝

sinh �s
2

�s
2

cosh �s
2

⎞
⎟⎠ , (5)

as the magnitude of the impulse at C , which is the same at the other collision points.
Since there are n collision points, summing all the corresponding forces gives

f n�t = −m
v(n�s)

tanh r

⎛
⎜⎝

sinh �s
2

�s
2

cosh �s
2

⎞
⎟⎠ . (6)

Next, let n → ∞, so that the number of sides of the polygon increases without bound.
Then �s → 0, n�s → L , and n�t → T , where L and T are the length of the cir-
cumference and the time the particle takes to travel around the circle, respectively.
Thus, since limx→0(sinh x)/x = 1 (which easily follows from L’Hospital’s rule), (6)
becomes

f T = −m
v

tanh r
L ,

or, since L = vT ,

f = −m
v2

tanh r
,

the desired centripetal force. This completes the proof.

It is curious to note that in the hyperbolic plane, as the radius of a circular path
becomes larger and larger, the limiting magnitude of force is mv2, quite in contrast
with the Newtonian case where the force dies out as the path of motion approaches a
straight line. Perhaps this is not too surprising. If we fix a point on the circle and move
the center farther and farther away along a line, the limiting shape is not a line, but a
special curve called a horocycle; since this curve is not straight, force is required to
keep the particle moving along it.

Elliptic geometry In the above proof, we can simply replace the hyperbolic Law of
Cosines by the elliptic one to prove that the centripetal force in elliptic geometry (for
a sphere of radius 1) is

− mv2

tan r
.

In this case, when r approaches π/2, the force becomes 0, which is fitting since then
the circular motion is along a great circle.
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Summary We compute the centripetal force exerted on a particle moving uniformly on the circumference of a
noneuclidean circle using Newton’s impact method.
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Two of the first identities encountered in a discrete mathematics course are the follow-
ing finite sums of binomial coefficients. For n ≥ 0,

∑
k≥0

(
n

k

)
= 2n (1)

and for n ≥ 1,

∑
k≥0

(
n

2k

)
= 2n−1. (2)

The sums are finite since
(n

k

) = 0 when k > n. Both of these identities have ele-
mentary combinatorial proofs. But when r ≥ 3, the sum

∑
k≥0

( n
rk

)
is rarely mentioned

because its closed form is more complex. (See Gould [1]. A special case appears in [3]
as problem 1.42(f).)

THEOREM 1. For n ≥ 0 and r ≥ 1,

∑
k≥0

(
n

rk

)
= 1

r

r−1∑
j=0

(1 + ω j )n, (3)

where ω = ei2π/r is a primitive r th root of unity.

Notice that when r = 1 or 2, we have ω = 1 or −1, respectively, and the formulas
in equations (1) and (2) are directly obtained. When r = 3, we have

ω = ei2π/3 = −1 + √
3 i

2

and then Theorem 1 yields, for n ≥ 0,

∑
k≥0

(
n

3k

)
= 2n + m

3
,
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where m depends on n and is equal to 2, 1, −1, −2, −1, 1, when n is congruent to
0, 1, 2, 3, 4, 5 (mod 6), respectively. Likewise when r = 4, we have ω = i , and we get

∑
k≥0

(
n

4k

)
= 2n + m2�n/2�

4
,

where m = 2, 1, 0, −1, −2, −1, 0, 1, when n ≥ 1 is congruent, respectively, to
0, 1, 2, 3, 4, 5, 6, 7 (mod 8). (When n = 0, this formula needs to be adjusted, since
00 = 1.)

A generalization of Theorem 1 (which appears in Gould [1] in modified form) also
has an attractive closed form.

THEOREM 2. For any integers 0 ≤ a < r and n ≥ 0,

∑
k≥0

(
n

a + rk

)
= 1

r

r−1∑
j=0

ω− ja(1 + ω j )n, (4)

where ω = ei2π/r is a primitive r th root of unity.

While Theorems 1 and 2 have succinct algebraic explanations using the binomial
theorem (see [2], [3]), our goal is to prove them combinatorially. In a combinato-
rial proof, an identity is proved by counting a problem in two different ways. Our
proofs will utilize the graph Cr , the directed, looped cycle graph with vertex set
V = {0, 1, . . . , r − 1} such that for each vertex j , there is an arc to vertex j and
j + 1 (mod r ). (See Figure 1.) We define an n-walk to be a walk on Cr that takes
exactly n steps. A walk that begins and ends at the same vertex is said to be closed;
otherwise it is open. For example, when r = 5, the walk 3, 4, 4, 0, 1, 1, 1, 2 is an open
7-walk. It makes 4 forward moves and 3 stationary moves. Another way to describe
this walk would be

X = (x0; x1, x2, x3, x4, x5, x6, x7) = (3; F, S, F, F, S, S, F)

where x0 indicates the initial vertex and the other values of xi indicate whether the i th
step is forward or stationary. Clearly, an n-walk that begins at x0 and makes m forward
moves will end up at vertex x0 + m (mod r ).

3 2

1

0

4

Figure 1 The looped cycle graph C5.
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Combinatorial Proof of Theorem 1

QUESTION. How many closed n-walks on Cr begin at vertex 0?

Answer 1. Starting at vertex 0, there are
(n

m

)
n-walks that take m forward steps. For

a walk to be closed, m must be a multiple of r . Consequently, our first answer is simply∑
k≥0

( n
kr

)
.

Answer 2. First we observe that there are as many closed n-walks that start at vertex
0 as start at vertex 1 or 2 or . . . or r − 1. Thus it suffices to prove that the total number
of closed n-walks on Cr is

∑r−1
j=0(1 + ω j )n. We accomplish this by assigning each

n-walk (whether it be open or closed) a weight that will depend on its initial vertex
and the number of forward moves. Specifically, an n-walk with initial vertex x0 = j
that makes m forward moves will be assigned a weight of ω jm . The 7-walk on C5 in
the previous example has j = 3, and m = 4 and therefore has weight ω12 = ω2 since
ω5 = 1. Equivalently, a walk that begins at vertex j and ends at vertex j + m (mod r )
has weight ω jm. In particular, any closed walk will have weight ω0 = 1.

Another way to think of the weight of a walk beginning at vertex j is that each
stationary step is given weight 1 and each forward step in the walk is given weight
ω j , and the weight of the walk is defined as the product of the weights of its steps.
Consequently, the total weight of all n-walks that begin at j is (1 + ω j)n , since each
(1 + ω j) represents a choice in our walk to make a stationary or forward move. (Alter-
natively, (1 + ω j )n = ∑

k≥0

(n
k

)
ω j k is the sum of the weights of all n-walks starting at

j since
(n

k

)
ω j k is the total weight of all such walks with k forward steps.) Summing

over all possible starting points,

r−1∑
j=0

(1 + ω j )n (5)

counts the total weight of all n-walks (open and closed) on Cr .
Our goal is to show that (5) counts the total number of all closed n-walks on Cr .

Since each closed walk has weight 1, it suffices to show that the total weight of all
open walks is zero. Consider an open walk X0 that begins at vertex 0 and ends at
vertex m �= 0. Then X0 generates the orbit {X0, X1, . . . , Xr−1} where walk X j starts
at vertex j , and then follows the same forward and stationary instructions as X0, ending
at vertex j + m (mod r ), with weight ω jm . Summing a finite geometric series, the total
weight of the n-walks in this orbit is

r−1∑
j=0

ω jm = 1 − ωmr

1 − ωm
= 0,

since ωr = 1 and ωm �= 1. Since every open walk appears in exactly one orbit, each
with total weight zero, the total weight of all open walks is zero, as desired. Summa-
rizing, for walks on Cr ,

the number of closed n-walks = the total weight of all closed n-walks

= the total weight of all n-walks

=
r−1∑
j=0

(1 + ω j )n.

Hence, the number of closed n-walks that begin at 0 is 1
r

∑r−1
j=0(1 + ω j )n .
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Combinatorial Proof of Theorem 2

In this proof, an n-walk on Cr that starts at vertex j and makes m forward moves
is defined to have weight ω− jaωmj = ω(m−a) j . Hence any walk that makes a + rk
forward moves has weight ωrk j = 1. Just like in the proof of Theorem 1, the total
weight of all n-walks on Cr is

∑r−1
j=0 ω− ja(1 + ω j )n. The theorem follows since the

walks that make forward progress m �= a + rk can be placed into orbits of total weight∑r−1
j=0 ω(m−a) j = 0.

Theorems 1 and 2 can also be expressed in terms of trigonometric functions [1],
sometimes without mentioning any complex numbers. Suppose ν = eiπ/r is a primitive
2r th root of unity so that ν2 = ω. Then using Euler’s formula, e−iθ + eiθ = 2 cos θ , we
may write the summand as

(1 + ω j )n = [v j (v− j + v j )]n = vnj (e−iπ j/r + eiπ j/r)n = vnj

(
2 cos

π j

r

)n

.

In particular, if n is a multiple of r , say n = qr , then

∑
k≥0

(
n

rk

)
= 2n

r

r−1∑
j=0

(−1)q j

(
cos

π j

r

)n

(6)

can be expressed entirely with real numbers. This is the form presented in [1]. Like-
wise, Theorem 2 simplifies to the same right hand side of (6) when n = qr + 2a.

Where do we go from here? A natural problem might be to try to count walks on
other graphs to discover other identities. Conversely, we hope this technique may allow
us to combinatorially understand other identities that mix binomial coefficients with
complex numbers. For example, Identity 2.24 in [1] says for r > 1,

∑
k≥1

1(kr
r

) =
r−1∑
k=1

−ωk(1 − ωk)r−1 log
1 − ωk

−ωk
,

where ω is a primitive r th root of unity. Perhaps with the right combinatorial perspec-
tive, this identity will not appear nearly so complex after all.

Acknowledgment The authors thank Keith Dsouza and Michael Krebs, whose talk at the Fall 2009 meeting
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Waiting for the fall Imagine observing a stream of random real numbers: If you saw
the sequence

0.0478, 0.1429, 0.1667, 0.2204, 0.8124, 0.8226, 0.3101 . . . ,

with the first decrease occurring in the seventh position, you might feel that this was
an unusually long time to wait for that first decrease—even if you’re not exactly sure
how long such a run “usually” lasts in a random sequence. The average position of the
first decrease in a stream of random numbers depends on precisely what you mean by
random; that is, it depends on the distribution of random numbers that you’re sampling.
Surprisingly, though, for continuous distributions, the question has a very specific (and
delightful) answer that is independent of how the random numbers are distributed.

We will uncover the answer in due time—in Proposition 2, to be precise. In the
meantime, exercise your intuition by making a guess in advance about how long, on
average, a monotone run like the one above will last in a sequence of random numbers.
If you’ve been around math much, you can probably make a shrewd guess based solely
on the fact that I described the answer as “delightful.” But we will start by discussing a
special case of the problem, when the random numbers are generated simply by rolling
dice.

The answers to these questions have been known to specialists for some time. In
fact, one can find the answer to the main question as an exercise in Knuth [5], and most
of the results here can be found, in a more general setting, in Guy Louchard’s thorough
analysis of monotone runs [6]. However, they do not seem to be well known generally,
despite their accessibility and interest for students with a basic undergraduate calculus
background.

The die-rolling game One of the fringe benefits of teaching a course on probability
and statistics is that it affords an excellent excuse to keep an assortment of toys on
my desk, especially all sorts of dice. This article had its beginning when I was rolling
an ordinary 6-sided die and got what I felt was an unusually long run before the first
decrease in the numbers occurred. It might have been something like this:

1, 3, 3, 3, 4, 6, 5

and I decided to make a game of it: I would award myself 7 points for that run, since
I got to roll seven times (including the final, decreasing roll that ended the game).
Naturally, I was wondering what a typical score in my new game might be. But I also
had my eye on the 4- and 20-sided dice lying nearby, and wondered if one of those
might give me a better chance to get a large score. (Exercise your intuition again: can
I expect to get a better score by choosing one of the other dice?)

Math. Mag. 83 (2010) 374–379. doi:10.4169/002557010X529798. c© Mathematical Association of America
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Mathematically, an n-sided die is modeled by a discrete random variable that is uni-
formly distributed over the set {1, 2, . . . , n}; by this we mean that all of the outcomes
in the set occur with the same probability, 1/n. But we’re not interested in single rolls
of the die; rather, we want to study nondecreasing runs from repeated rolls of the die,
and that motivates the following. Given any random variable X we define an associ-
ated random variable R(X), the run-length variable for X , as follows: We sample X
until the first decrease occurs, then let R(X) be the total number of samples we took,
including the final decrease that ends the experiment. Call X the underlying variable
of R(X).

The R(X) notation emphasizes the fact that the experiment depends on the under-
lying variable X , but we’ll suppress the argument and simply refer to R when the
underlying variable is clear from context. And we’ll call the run-length variable Rn

when X is an n-sided die roll.
Our goal now is to study the expected value of R, particularly when the underlying

variable is an n-sided die roll. Informally, the expected value of a random variable is
the long-term average of its outcomes; by definition, the expected value of R is

E[R] =
∑

r

r f (r),

where the summation is over all possible outcomes r that might occur, and f (r) de-
notes the probability of getting outcome r .

No matter what the underlying variable is, we always get an outcome of at least 2 for
R. On the other hand, there’s no upper bound on the potential length of a nondecreasing
run, so the possible outcomes of R are {2, 3, 4, . . . }, and we can rewrite the expected
value calculation with more explicit limits of summation:

E[R] =
∞∑

r=2

r f (r).

Next we find an explicit formula for f (r) in the case of an n-sided die roll. Take
n ≥ 2, and let an(r) denote the number of nondecreasing sequences of length r that
can be formed from the set {1, 2, . . . , n}. This is a problem of selection with repetition
allowed, and any combinatorics text will tell you that an(r) is given by a binomial
coefficient: an(r) = (n+r−1

n−1

)
. In fact, we do not need to defer to a text for this: Imagine

making your nondecreasing selection by distributing r stones among boxes numbered
1 through n, all in a row. Place a stick between each adjacent pair of boxes; now, let the
boxes vanish (leaving their contents behind). What remains is a sequence of r stones
and (n − 1) sticks which uniquely codes for your selection, and the number of such
sequences is counted by the binomial coefficient we have given.

With this notation the probability that a sequence of length r is nondecreasing is
an(r)/nr . The probability that a random sequence of length r decreases for the first
time in the last position, then, is the probability that it increases for r − 1 steps, minus
the probability that it increases for r steps:

fn(r) = an(r − 1)

nr−1
− an(r)

nr
, (1)

which can simplified (just combine fractions and cancel factorials) to

fn(r) =
(

n + r − 2

r

)
· (r − 1)

nr
. (2)

With a formula for the mass function established, we can proceed to the expected
value problem.
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PROPOSITION 1. The expected value of Rn is given exactly by

E[Rn] =
(

n

n − 1

)n

Proof. With formula (2) in hand, we can write the summation for the expected value
as

∞∑
r=2

r ·
(

n + r − 2

r

)
· (r − 1)

nr
(∗)

and massage the form until the sum can be evaluated, as follows:

(∗) = n(n − 1)

∞∑
r=2

(
n + r − 2

r − 2

)(
1

n

)r

= n − 1

n

∞∑
r=0

(
n + r

r

)(
1

n

)r

= n − 1

n

(
1 − 1

n

)−(n+1)

,

the last line following from the binomial series expansion of
(
1 − 1

n

)−(n+1)
which

appears in the previous step. The series does converge, since we are assuming n ≥ 2,
and of course the resulting expression reduces to the form in the statement of the
proposition.

Let’s look back at a few questions we can now answer about the die-rolling game:

1. By formula (2), the probability that I would get a score of 7, using an ordinary
6-sided die as in the example, is just

f (7) =
(11

7

) · 6

67
,

which is about 0.007—small enough that you might suspect my example is ficti-
tious. (With a little more work you can check that the probability that I would get a
score of 7 or more is just a tiny bit less than 1%, which is probably a more relevant
fact.)

2. By Proposition 1, the average score for a game with a 6-sided die would be (6/5)6,
or just barely under 3.

3. Since the formula (n/(n − 1))n is strictly decreasing in n (a popular exercise), I’d
have a higher score, on average, if I switched to a 4-sided die, and a lower score if
I used the 20-sided die. In fact, to maximize your score, your best bet for this game
would be to toss a coin with sides labelled 1 and 2. You’d expect an average score
of 4 in that case.

If you’re still thinking about the question posed in the introduction, you might stop
to consider this: What can you say about the expected value of R if X has a very large
number of equally likely outcomes?

A variation: strictly increasing die rolls If we change the rules of the die-rolling
game slightly to insist on strictly increasing numbers, we get slightly different results
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for the mass function and expected score. In the strictly increasing game, for example,
rolling

1, 3, 5, 5

would cause the game to end with a score of 4. We can briefly establish results anal-
ogous to those of the previous section for the strictly increasing game. The expected
value calculation may seem even simpler, as it uses the more familiar version of the
binomial theorem, where the exponent is a positive integer.

Given any random variable X , define another random variable Rs(X) as follows:
we sample X until we get a result which is not strictly greater than the previous result,
then let Rs(X) be the total number of samples we took. If X represents an n-sided die
roll, then the probability mass function for Rs(X) is given by

fs(r) =
(

n + 1

r

)
· (r − 1)

nr
. (3)

The details are left as an exercise; the derivation is very similar to the nondecreasing
case. And if X represents an n-sided die roll then the expected value of Rs(X) is given
by

E[Rs(X)] =
(

n + 1

n

)n

(4)

To verify this, notice that in this variant we have an upper bound on the possible
scores: If we use an n-sided die, then our score must come from the set {2, . . . , n + 1}.
That means that the expected value calculation involves only a finite sum:

E[Rs] =
n+1∑
r=2

r ·
(

n + 1

r

)
(r − 1)

nr

=
(

n + 1

n

) n−1∑
r=0

(
n − 1

r

)(
1

n

)r

=
(

n + 1

n

) (
1 + 1

n

)n−1

,

with the last line following by the binomial theorem. And this simplifies to
(

n+1
n

)n
as

claimed.

QUESTION. In the strictly increasing game, what sort of die (how many sides)
should you choose to maximize your expected score?

The continuous game Now, instead of rolling dice to generate our random numbers,
suppose we have a continuous (real) random variable X as our source of randomness.

The only assumption we will make is that X is described by a probability density
function—that is, there is a nonnegative function p(x) on R with the property that the
probability that X is between a and b is given by

P(a ≤ X ≤ b) =
∫ b

a
p(x) dx .

With a continuous random variable, there is zero probability of any sample dupli-
cating an earlier number in the sequence. Therefore, the probability that a randomly
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generated sequence of length r is nondecreasing is the same as the probability that
it is strictly increasing, 1/r ! in both cases. As in equation (1), we can compute the
probability of a monotone run of length as a difference of probabilities:

f (r) = 1

(r − 1)! − 1

r ! = (r − 1)

r ! (5)

PROPOSITION 2. Let R be the run-length variable for any continuous random vari-
able X. Then the expected value of R is exactly

E[R] = e,

the base of the natural logarithm.

Proof. This is just an easy corollary of the formula for the mass function; working
directly from the definition of expected value we have

E[R] =
∞∑

r=2

r f (r) =
∞∑

r=2

r(r − 1)

r ! =
∞∑

r=2

1

(r − 2)!
and this last expression is exactly the beloved series expansion

1

0! + 1

1! + 1

2! + 1

3! + · · · = e.

Based on the previous sections, we might have arrived at this result heuristically
as follows: a continuous distribution is, loosely speaking, like a distribution with in-
finitely many equally likely outcomes. Since the expected run length when there are n
equally likely outcomes is E[Rn] = (n/(n − 1))n, we could have guessed that

E[R] = lim
n→∞

(
n

n − 1

)n

and this is another famous limit expression for e. (We could just as well have used a
limit of formula (4) from the strictly increasing game.) There is a pleasant symmetry
in the way the strictly increasing and nondecreasing versions of the discrete game ap-
proach the continuous game, matched by the use of the binomial theorem with positive
and negative exponents. This can be seen in the mass functions as well as the expected
value result: taking the limit as n goes to infinity in equations (2) or (3) gives the mass
function for the continuous case.

The appearance of e in this problem is reminiscent of its appearance in the “Hat-
Check Problem” [2, 3], where 1/e occurs as the approximate probability that a random
permutation of an n-element set has no fixed points; the probabilities converge to e
as n gets large. In the hat-check problem, 1/e is an excellent approximation to the
true probability even for relatively small n. In our problem, the expected value for
Rn converges much more slowly to e; roughly, you have to use an n = 10k-sided die
for E[Rn] to match k decimal digits of e. The slow convergence of this sequence is
discussed in an interesting article by Knox and Brothers [4].

A combinatorial connection The discrete distribution described by equation (5) can
be viewed as a limiting case of either of the two families of distributions described by
equations (2) and (3). Neither the families nor the limiting distribution appear to be
familiar enough to have a widely-known name attached to them. For the statistically-
inclined and curious, further investigation of these distributions might begin with their
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variance and higher moments. In the case of the run-length distribution for continuous
variables, that would entail considering sums of the form

∞∑
r=2

r k(r − 1)

r ! (6)

for different exponents k. Starting with k = 1, this will yield a sequence beginning

e, 3e, 10e, 37e, 151e, 674e, . . . .

The sequence of coefficients (sequence A005493 in Sloane’s index [8]) has a combi-
natorial interpretation in its own right, but may be better recognized as first differences
in the sequence of Bell numbers,

{Bk} = 1, 2, 5, 15, 52, 203, 877, . . . ,

which count the number of ways to partition a k-element set. The connection can be
seen by splitting (6) as

∞∑
r=2

r k

(r − 1)! −
∞∑

r=2

r k−1

(r − 1)!
and recognizing these as Dobinski’s summations [1, 7] for Bk+1 and Bk (albeit with
their first terms deleted). This fact probably doesn’t afford us any winning insight into
dice games, but the emergence of the Bell numbers here, hand in hand with Euler’s e,
seems to mark this problem as perfectly poised on the boundary between continuous
and discrete mathematics, and a satisfying demonstration of the interplay between
them.
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Summary Increasing runs of numbers are a naturally attractive feature in any randomly-generated sequence.
Surprisingly, the average length of such runs is easy to compute and does not depend on the distribution of the
random numbers, at least in the case of continuous random variables. We prove this, along with similar results
for runs in sequences generated by rolling dice.
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It is well known that Ex,α(n) = (1 + x
n )n+α = (1 + x

n )n(1 + x
n )α converges to ex for

every fixed x, α ∈ R. For the two most famous sequences of this form, {(1 + 1
n )n}

and {(1 + 1
n )n+1}, convergence to e is strictly monotonic—consecutive terms from the

first sequence strictly increase for all n ≥ 1 while those from the second sequence
strictly decrease for all n ≥ 1. Recent notes in this MAGAZINE [3, 4] demonstrate these
properties using little more than the arithmetic-geometric-mean inequality. Behavior
of the sequences {Ex,α(n)} for all values of x and α is more complicated, as we show
in this note.

My interest in the topic was awakened one day while playing with a calculator.
I tried to investigate monotonicity experimentally by comparing (1 + x

n )n+α with
(1 + x

n+1 )
n+1+α. The comparisons seemed more striking when I rewrote

(
1 + x

n

)n+α

<

(
1 + x

n + 1

)n+1+α

as
(n + x)n+α

nn+α
<

(n + x + 1)n+α+1

(n + 1)n+α+1
.

After using the calculator to verify (for small values of n) known inequalities in the
cases where x = 1, α = 0 and where x = 1, α = 1, I looked at corresponding inequal-
ities for other values of x and α. For example, when x = 9 and α = 5, the calculator
showed that terms of the sequence {(1 + 9

n )n+5} decrease monotonically:

106

16
>

117

27
>

128

38
>

139

49
>

1410

510
> · · · .

When x = 9 and α = 4, initial terms of the sequence {(1 + 9
n )n+4} also decreased:

105

15
>

116

26
>

127

37
>

138

48
>

149

59
> · · · >

3126

2226
>

3227

2327
.

But then came a surprise. The sense of the inequality reversed between the twenty-third
and twenty-fourth terms:

3227

2327
<

3328

2428
.

The reversed sense then persisted for all larger comparisons that the calculator could
make. What was going on? Rewritten in the form

15 · 116 < 26 · 105

26 · 127 < 37 · 116

37 · 138 < 48 · 127

...

2226 · 3227 < 2327 · 3126

2327 · 3328 > 2428 · 3227
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the reversal is perhaps even more striking. (When x = 11 and α = 5, a reader who
perseveres can find a similar reversal in the sense of the inequalities, but the change
occurs a few terms later.)

Such behavior prompts a question: How do all of the sequences {Ex,α(n)} approach
their limits? The general question does not seem to have been considered for all pos-
sible real values of x and α. In the best-known cases [2], {(1 + x

n )n} increases mono-
tonically for all n when x > 0, while {(1 + x

n )n+α} decreases monotonically for all n
provided α ≥ x > 0. The same behavior governs the special case analyzed recently by
Khattri [1]. Our example, however, shows that there is another possibility. The terms
of {E9,4(n)} = {(1 + 9

n )n+4} decrease for n = 1, . . . , 23 and then increase monotoni-
cally (so it turns out) towards e9. This shows what can happen when α < x . In fact, we
shall see that a change of direction can occur only if 0 < α < x/2. This single change
of direction is as bad as it ever gets—after the change, the sequence is monotonic.

Focusing on the case where x > 0, here are the main results.

THEOREM. Assume x > 0 and α are fixed.

(a) The sequence {Ex,α(n)} = {(1 + x
n )n+α} increases monotonically if α ≤ 0 and de-

creases monotonically if α ≥ x
2 .

(b) If 0 < α < x
2 , then there exists a unique positive solution t = t1 of

ln
(

1 + x

t

)
− x(t + α)

t (t + x)
= 0.

The sequence {Ex,α(n)} decreases monotonically for n ≤ t1 and increases mono-
tonically for n ≥ t1.

The theorem is an immediate consequence of Proposition 1, stated and proved be-
low, which considers functions like those defining the sequences but with a real vari-
able, t , replacing n. As t → +∞, monotonicity of Ex,α(t) is exactly as described in
the theorem and t1, when it exists, is the unique critical value. Indeed, behavior of the
real-variable function for a given x and α completely determines the behavior of the
corresponding sequence with one slight ambiguity—if n1 < t1 < n1 + 1, one does not
know how Ex,α(n1) and Ex,α(n1 + 1) compare. For instance, the value of t1 computed
for {E9,4(n)} is approximately 22.65, while the value for {E9.01,4(n)} is about 22.44.
Both sequences decrease monotonically for n ≤ 22 and increase monotonically for
n ≥ 23. The comparison of terms on either side of t1, however, is different for the two
sequences:

E9,4(22) = (31/22)26 > (32/23)27 = E9,4(23) but E9.01,4(22) < E9.01,4(23).

Some properties of Ex,α(t) can be inferred from typical sketches, as in FIGURE 1.
One property that is not immediately apparent from the sketches is that on the right-

hand side of each sketch, the curve where α = x/2 separates the curves that decrease
monotonically for all t > 0 from those that first decrease and then increase. Showing
that Ex,α has a single critical point when 0 < α < x/2 and no critical point otherwise
will resolve this issue. Taking into account the behavior as t → 0+, the lack of critical
points for other values of α will imply that curves with α ≥ x/2 monotonically de-
crease and those with α ≤ 0 monotonically increase for all t > 0. We therefore wish
to prove:

PROPOSITION 1. Fix x > 0 and α; then Ex,α(t), for t > 0, has a unique critical
value, t1, when 0 < α < x/2, and otherwise has no critical value.
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Figure 1 (a) y = E1,α(t) = (
1 + 1

t

)t+α
, (b) y = E3,α(t) = (

1 + 3
t

)t+α
, both for indicated

values of α

Proof. Since Ex,α(t) > 0 for all t > 0, the derivative E ′
x,α(t) = 0 if and only if

Fx,α(t) = E ′
x,α(t)

Ex,α(t)
= ln

(
1 + x

t

)
− x(t + α)

t (t + x)
= 0.

For a given value of α, it therefore suffices to determine the number of positive roots
of Fx,α(t) = 0. Simple limit calculations show

lim
t→0+ Fx,α(t) =

{−∞ if α > 0
+∞ if α ≤ 0 and lim

t→∞ Fx,α(t) = 0.

Moreover,

F ′
x,α(t) = (−x2 + 2αx)t + αx2

t2(t + x)2
= 0 iff t = αx

x − 2α
.

As x is positive, the value t0 = αx /(x − 2α) cannot be positive if α ≤ 0, so there are no
positive critical values of Fx,α in this case. The asymptotic values of Fx,α(t) computed
when α ≤ 0 therefore force Fx,α(t) > 0 for all t > 0. Hence Ex,α(t) has no critical
values for t > 0 when α ≤ 0.

When α > 0, t0 = αx /(x − 2α) is positive only when x − 2α > 0 or in other words,
when 0 < α < x/2. The corresponding critical value of Fx,α together with the asymp-
totic values found above force Fx,α(t) to change sign exactly once as t goes from 0 to
+∞. It follows that Fx,α(t1) = 0 for a single value t1 with 0 < t1 < t0. Hence Ex,α(t)
has a single positive critical value, t1, when 0 < α < x/2. On the other hand, when
0 < x/2 ≤ α, Fx,α has no positive critical value. This, combined with the correspond-
ing asymptotic information, implies Fx,α(t) < 0 for all t > 0. So in this case, Ex,α(t)
has no critical value.

Proposition 1 establishes the Theorem and also the claim that Ex,α(t) with α =
x/2 separates the monotone graphs in FIGURE 1 from those that decrease and then
increase. These properties require x > 0. When x < 0, the situation is similar, but
the details change. As t goes from |x | to +∞ for a fixed negative x and α ≤ x < 0,
Ex,α(t) decreases monotonically. When x < α < x/2 < 0, Ex,α(t) first increases and
then decreases monotonically. And when x/2 ≤ α, Ex,α(t) increases monotonically.
Interested readers may confirm these properties for themselves.

Far-flung reversals We should keep in mind that all of the sequences {Ex,α(n)} con-
verge to their limits very slowly. For example, {E9,4(n)} and {E9.01,4(n)}, considered
earlier, require more than 100,000 terms to get within .1 of their limiting values. It
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is conceivable that a change of direction in the growth of terms of some of the se-
quences might also occur very far out in those sequences. This matter is not settled by
the theorem, but Proposition 1 and some of the details of its proof give good tools for
investigation.

We will prove that in any collection of sequences of the form {Ex,α(n)} with 0 <

α < x/2, where either x or α is fixed, there are sequences where the change from de-
crease to monotonic increase occurs beyond a point specified by an arbitrarily chosen
positive integer.

To establish this assertion, we first consider the case where α = 1 is fixed and x > 2.
Define a ratio function ψx,1(t) = Ex,1(t)/ex = e−x(1 + x

t )
t+1, which approaches 1 for

large t . Define a region A of the plane by A = {(t, ψx,1(t)) | 2 ≤ x ≤ 3, t > 0}. The
region is shown in FIGURE 2.

A

1

.75

•

(t0,1)

1
t

t00

ψ2,1

ψ3,1

ψx0,1

Figure 2 The region A = {(t, ψx,1(t)) | 2 ≤ x ≤ 3, t > 0} where ψx,1(t) = e−x(1 + x
t )

t+1.

For any fixed value t0 > 0, ψx,1(t0) is a differentiable function of x . A straightfor-
ward calculation shows that this function is strictly decreasing, which implies that it is
one-to-one. If t > 0 varies, it follows that for all x between 2 and 3, the graphs of the
curves defined by ψx,1 are disjoint and fill out the region A.

For any fixed value of x , the functions ψx,1 and Ex,1 have the same derivative with
respect to t up to the factor e−x . Hence they have the same critical values, and con-
clusions of Proposition 1 apply to ψx,1. Comparing outputs of the upper and lower
bounding functions of A, ψ2,1(t) > 1 for all t > 0 while ψ3,1(t) < 1 for all t ≥ 1.
(These follow from Proposition 1 and the fact that ψ3,1(1) < 1.) Let t0 be any fixed
positive value greater than 1. Since the curves ψx,1 fill out region A, one of them, ψx0,1,
must pass through the point (t0, 1), as shown in FIGURE 2. By Proposition 1, ψx0,1(t)
must approach 1 through values less than 1, so its unique critical point must have
t-coordinate greater than t0. This shows that there are functions ψx,1 (and also Ex,1)
whose critical values are arbitrarily large and sequences {Ex,1(n)} = {(1 + x

n )n+1} that
decrease for more than any specified number of terms before increasing monotonically
towards their limits.

With straightforward modification, similar arguments show for any fixed α > 0
that values of x can be found with α < x/2 for which the functions ψx,α and Ex,α have
arbitrarily large critical values and for which the sequences {Ex,α(n)} = {(1 + x

n )n+α}
decrease for a correspondingly large number of terms before increasing monotonically.
When x rather than α is fixed and the collection of sequences is chosen to include all
values of α with 0 < α < x/2, further modification shows that there are again func-
tions Ex,α with arbitrarily large critical values and sequences {Ex,α(n)} = {(1 + x

n )n+α}
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from the collection where the number of terms that decrease before monotonic increase
takes hold exceeds any specified number.

As a concluding example, we compare the sequences {E2.1,1(n)} and {E2.001,1(n)},
which both decrease before increasing to their limits. The minimum value of E2.1,1(t)
occurs near t = 14. A calculator verifies that the first fourteen terms of the sequence
{E2.1,1(n)} = {(1 + 2.1

n )n+1} decrease while succeeding terms increase. After the sense
of the inequality reverses, Proposition 1 and the Theorem guarantee that the sequence
then increases monotonically towards the limiting value e2.1. But the reversal is much
less easy to spot for the sequence

E2.001,1(n) = (n + 2.001)n+1

nn+1
.

Write down the first five hundred or so terms for someone not in the know,

3.0012

12
>

4.0013

23
>

5.0014

34
>

6.0015

45
> · · · >

502.001501

500501
> · · · ,

and then ask: What do you think? Will this sequence always decrease, or not?
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Summary Apparently, it has not previously been observed that as n → ∞, a sequence of the form {(1 + x
n )x+α}

with x > 0 can first decrease for more than any arbitrarily specified number of terms before increasing monoton-
ically towards the limiting value, ex . We prove that when 0 < α < x

2 , values for x and α can always be found so
that this type of reversal in the growth of terms of the sequence is realized, and outside this range, convergence is
strictly monotonic starting from the first term of the sequence.

Golden Window
JERZY KOCIK

Southern Illinois University Carbondale
Carbondale IL 62901

jkocik@siu.edu

The design of the window illustrated in FIGURES 1 and 2 should please every fan of
geometry. With this window in my home, whether the circular medallion of FIGURE

1 or the semi-circular arch FIGURE 2, I would offer guests a puzzle: Start with two
small central circles of unit diameter, then find the radius R of the two circles on their
left and right, given that a pair of congruent circles (dotted) is simultaneously tangent
to all the other circles.

Math. Mag. 83 (2010) 384–390. doi:10.4169/002557010X529815. c© Mathematical Association of America
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R = ? 

1

Figure 1 A puzzle

Guests could deduce, by multiple applications of the Pythagorean Theorem, for
instance, that R = ϕ ≈ 1.618, the golden ratio!

There is more: The centers of the two circles of radius R are located at distance
1 + ϕ = ϕ2 from the center of the window and the radius of the big circumscribing
circle is the cube of the golden ratio, 1 + ϕ = ϕ3. Actually, the figure is replete with
the golden ratio and its powers; hence the design deserves the name golden window.

I could spend time calling my guests’ attention to the “golden” attributes of the
window. To start with, it contains powers of the golden ratio from ϕ0 to ϕ4, as shown
in FIGURE 2. It also contains various segments with golden cuts, as shown in the same
figure below the window.

ϕ3

ϕ

ϕ4

ϕ2

ϕ

ϕ2
Golden section of
various segments
in the base of the
window.

 
1

ϕ

ϕ3 ϕ2

Figure 2 Golden window—proportions

Recognizing such segments is an easy game (once you establish that R = ϕ) if only
we remember the fundamental properties of the golden ratio, namely

ϕn = ϕn−1 + ϕn−2 and ϕn = Fnϕ + Fn−1,

where Fn denotes the nth Fibonacci number, F1 = 1, F2 = 1, F3 = 2, . . . , with
Fn+1 = Fn + Fn−1. For small n we have:

ϕ2 = ϕ1 + ϕ0 = ϕ + 1

ϕ3 = ϕ2 + ϕ = 2ϕ + 1
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ϕ4 = ϕ3 + ϕ2 = 3ϕ + 2

ϕ5 = ϕ4 + ϕ3 = 5ϕ + 3, . . .

Next, I would point out various golden rectangles in the construction:

If the window were truncated to the upper half, I could challenge my guests to find
these golden rectangles:

The culmination would be the challenge of finding the silhouette of the Khu-fu
pyramid of Giza. Recall that the pyramid’s half-silhouette makes (intentionally or not)
a nearly perfect model of the so-called Kepler triangle, a right triangle whose edges
form a geometric progression. The only such triangle has sides proportional to 1 : √

ϕ :
ϕ. The shaded triangle shown below at the left has just such proportions.

 ϕ2

ϕ3
ϕ5/2

Indeed, the height h can be calculated from its base ϕ2 and its hypotenuse ϕ3 with the
Pythagorean theorem:

h2 = (ϕ3)2 − (ϕ2)2 = ϕ6 − ϕ4 = ϕ4(ϕ2 − 1) = ϕ4ϕ = ϕ5.

Thus we have the triangle (ϕ2, ϕ5/2, ϕ3) = ϕ2(1,
√

ϕ, ϕ)—Kepler’s golden triangle
scaled by the factor ϕ2. The pyramid may of course be drawn in a central position as
well (the trick to see it is to apply reflective symmetry to the initial triangle).

A last challenge would be to inscribe two small circles in the upper left and right
of the window. The question is: Are their centers collinear with the center of the other
upper circle? And are they vertically aligned with the circles below them, or do they
only seem so? The emerging rectangle (dotted lines) seems to be composed of two
squares (the center of either small upper circle and the principal center would form a
square’s diagonal); is it indeed a square?

This would lead us to consider Descartes’ circle formula [2], its extension [7], and
its generalization [5]. But that would have to wait until after dinner.

Tools for tangent circles Readers may have solved the original puzzle—to find
the radii of the circles that make the construction possible—by repeated use of the
Pythagorean Theorem, but the last few questions present quite a computational chal-
lenge if this is the only tool available. A more insightful approach to circles in various
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Figure 3 Are the centers aligned?

configurations starts with Descartes’ theorem, its extension (which was discovered
only in 2001), and finally the most general theorem. They are collected below for the
convenience of the reader and as an inducement to study further the beautiful geometry
of circles.

Level 1: Descartes theorem In 1643, René Descartes gave a remarkable formula
that relates the radii of four mutually tangent circles [2]:(

1

r1
+ 1

r2
+ 1

r3
+ 1

r4

)2

= 2

(
1

r 2
1

+ 1

r 2
2

+ 1

r 2
3

+ 1

r 2
4

)
. (1)

Using the reciprocals of radii, that is, the curvatures, the formula reads

(a + b + c + d)2 = 2(a2 + b2 + c2 + d2), (2)

where a = 1/r1, b = 1/r2, and so on. We assume that if a circle contains the other
circles, its curvature is negative.

Descartes’ formula has been rediscovered many times and its higher-dimensional
generalization has also been found [1, 10, 4]. A system of four pairwise tangent circles
is called the Descartes configuration, and sometimes Soddy’s circles [8], after one of
the re-discoverers [10].

Figure 4 Examples of four circles in the Descartes configuration

One could use Descartes’ formula to determine the radius of the upper corner circles
in FIGURE 3. Each belongs to a Descartes configuration with three other circles with
curvatures

a = ϕ−1, b = √
5ϕ−3, c = −ϕ−3.

Substituting in (2), we get d = √
5ϕ−1, which gives the radius r = ϕ/

√
5 =

(5 + √
5)/10. This suffices to establish the collinearity of points hypothesized in

the puzzle, although one does need to know the radius of the central upper circle.
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Level 2: Extended Descartes theorem Note that Descartes’ formula is quadratic
and may be represented in matrix form. If b1 = 1/r1, b2 = 1/r2, etc., denote curvatures
then

[
b1 b2 b3 b4

]
⎡
⎢⎣

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎤
⎥⎦ ·

⎡
⎢⎣

b1

b2

b3

b4

⎤
⎥⎦ = [0], (3)

or—briefly—BT DB = 0, with the obvious association of symbols. The Extended
Descartes theorem was proposed by Lagarias, Mallows, and Wilks in 2002 [7]. In ad-
dition to the curvatures, it includes the positions of the centers (xi , yi ), i = 1, . . . , 4,
and some additional variables, yet to be explained. First let us enjoy the nice matrix
form:
⎡
⎢⎢⎣

ẋ1 ẋ2 ẋ3 ẋ4

ẏ1 ẏ2 ẏ3 ẏ4

b1 b2 b3 b4

b1 b2 b3 b4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

ẋ1 ẏ1 b1 b1

ẋ2 ẏ2 b2 b2

ẋ3 ẏ3 b3 b3

ẋ4 ẏ4 b4 b4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−4 0 0 0
0 −4 0 0
0 0 0 8
0 0 8 0

⎤
⎥⎥⎦ .

(4)

Note that the original Descartes formula (3) is embedded in (4). The dotted variables
represent reduced coordinates—reduced by the corresponding radii: ẋi = xi/ri and
ẏi = yi/ri . The barred bs denote the cocurvatures of the circles and are defined as
b = (ẋ2 + ẏ2 − 1)/b for each circle, but they need not concern us: For our purposes
one needs only to extract from (4) three equations, X T DX = −4, Y T DY = −4, and
BT DB = 0, where X , Y , and B denote the first three columns of the third matrix,
respectively.

Level 3: General circle theorem Unfortunately the crucial circles in the golden
window do not form a Descartes configuration. The question is: is there a formula that
would apply to not-necessarily-tangent circles? I am happy to report that there is.

Suppose you have four circles in general position (some tangent, some possibly
orthogonal, etc.). Define a circle configuration matrix f with entries

fi j = d2
i j − r 2

i − r 2
j

2rir j
. (5)

The six numbers di j denote the distances between the centers of the corresponding
circles.

d12
C1

C2

C3 C4

r1

r2

Figure 5 Four circles in general position
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CIRCLE CONFIGURATION THEOREM [6]. With the above notation, four circles in
general position satisfy
⎡
⎢⎢⎣

ẋ1 ẋ2 ẋ3 ẋ3
ẏ1 ẏ2 ẏ3 ẏ4
b1 b2 b3 b4

b1 b2 b3 b4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

F11 · · · F14

...
...

F41 · · · F44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ẋ1 ẏ1 b1 b1

ẋ2 ẏ2 b2 b2

ẋ3 ẏ3 b3 b3

ẋ4 ẏ4 b4 b4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−1 0 0 0
0 −1 0 0
0 0 0 2
0 0 2 0

⎤
⎥⎥⎦ ,

(6)

where F is the inverse of the configuration matrix, F = f −1.

The truncated version for curvatures only is thus BT F B = 0, or∑
i, j

Fi j bi b j = 0 (7)

and may be viewed as a strong generalization of the Descartes formula.
Fortunately, finding the entries of the matrix f is often quite simple and direct,

without the need of equation (4). Special cases are shown in FIGURE 6, where the i j th
entry is denoted as a “product of two circles,” fi j = 〈Ci , C j 〉, called in [5] the “Pedoe
product,” since it may indeed be traced to D. Pedoe [9, p. 155].

external internal orthogonal intersecting same circle
tangency tangency circles circles C1 = C2

ϕ

〈C1, C2〉 = 1 〈C1, C2〉 = −1 〈C1, C2〉 = −1 〈C1, C2〉 = cos ϕ 〈C1, C2〉 = −1

Figure 6 Pedoe inner product of two circles (possible entries of matrix f )

Note that in the special case of mutually tangent circles, FIGURE 6 shows us that
the matrix f is the one in (3). Its inverse is F = f −1 = (1/4) f ; thus the Descartes
formula (including the extended version) follows as a very special case.

The theorem may be used to solve the puzzle. By the way, the design is a special
case of a lens chain—a collinear system of tangent circles simultaneously tangent to
two congruent disks; more on this may be found in [6].
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Summary Finding appearances of the golden ratio in various nooks and crannies of mathematics brings delight,
often surprise. This note presents, in the form of a puzzle, a configuration of circles that is replete with the golden
ratio. But that is only the surface. One tool to analyze such figures is the “master matrix equation” that rules circle
(and n-sphere) configurations. This equation generalizes the famous circle theorem of Descartes (known also as
Soddy’s kissing circle theorem).

Questions answered The first two questions posed at the end of this note have posi-
tive answers: The centers of the little corner circles are indeed aligned with the centers
of the adjacent circles. Their exact positions and radii are shown in the FIGURE 7.

0
x 

y 

x = ϕ2 = 3 + √
5

2

R = ϕ3

√
5

R = ϕ−2

√
5

= 5 + √
5

10

y = 2ϕ2

√
5

= 1 + 3√
5

R = ϕ = 1 + √
5

2

Figure 7 Some answers

As to the “square,” it turns out that it is actually a rectangle of proportion 2:
√

5, as
can be seen above.
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PROPOSALS

To be considered for publication, solutions should be received by May 1, 2011.

1856. Proposed by H. A. ShahAli, Tehran, Iran.

(a) Determine all the positive integers n for which there exists an n × n array of entries
in {0, 1} such that the row sums are pairwise distinct and the column sums are all
equal.

(b) Determine all such positive integers n under the additional restriction that every
row has at least one entry equal to 1.

1857. Proposed by Cezar Lupu (student), University of Bucharest, Bucharest, Roma-
nia; and Tudorel Lupu, Decebal High School, Constanta, Romania.

Let ABC be an arbitrary triangle with a = BC, b = AC, and c = AB. The points A1,
B1, and C1, on the segments BC, AC, and AB, respectively, satisfy that AB + BA1 =
AC + CA1, BC + CB1 = BA + AB1, and CA + AC1 = CB + BC1. Prove that

Area(A1 B1C1)

Area(A B C)
≤ 9abc

4(a + b + c)(a2 + b2 + c2)
.

1858. Proposed by Herman Roelants, Center for Logic, Institute of Philosophy, Uni-
versity of Louvain, Leuven, Belgium.

Let p ≥ 3 be an odd integer. Prove that the equation u p + 4p−1 = v2 has nonzero
rational solutions (u, v), if and only if, the equation x p + y p = z p has nonzero integer
solutions (x, y, z).

Math. Mag. 83 (2010) 391–397. doi:10.4169/002557010X529824. c© Mathematical Association of America
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electronic, should include on each page the reader’s name, full address, and an e-mail address and/or FAX
number.
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1859. Proposed by Valmir Krasniqi, Department of Mathematics, University of Prish-
tina, Prishtinë, Republic of Kosova.

Let α be a positive real number and f be a nonnegative function on [0, 1] such that∫ 1

x
( f (t))α dt ≥

∫ 1

x
tα dt for all 0 ≤ x ≤ 1.

Prove that
∫ 1

0 ( f (t))α+β dt ≥ ∫ 1
0 ( f (t))αtβ dt ≥ ∫ 1

0 tα+β dt for every positive real β.

1860. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu,”
Bârlad, Romania.

Let α be a complex number such that |α| > 1 and let n be an integer such that n > 2.
Prove that at least n − 2 roots of the equation zn + αzn−1 + αz + 1 = 0 have norm
equal to 1.

Quickies

Answers to the Quickies are on page 397.

Q1005. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA.

Let (X, d) be a complete metric space. Suppose A and B are both Gδ sets in X and
A ∩ B is of the first category. (A set is a Gδ set if it can be expressed as a countable in-
tersection of open sets and it is of the first category if it can be expressed as a countable
union of nowhere dense sets.) Prove that A and B cannot both be dense in X .

Q1006. Proposed by Mowaffaq Hajja, Mathematics Department, Yarmouk University,
Irbid, Jordan.

Let ABC be a triangle and � the line through A parallel to BC. The internal angle
bisector of �ABC through B intersects AC and � at B ′ and B ′′, respectively. Similarly,
the internal angle bisector through C intersects AB and � at C ′ and C ′′, respectively.
Prove that if the circumradii of �AB′ B ′′ and �AC′C ′′ are equal, then AB = AC.

Solutions

When k is the largest in the cycle of 1 December 2009

1831. Proposed by Emeric Deutsch, Polytechnic Institute of NYU, Brooklyn, NY.

Let k and n be positive integers with 1 ≤ k ≤ n, and let a(n, k) be the number of
permutations of the set {1, 2, . . . , n} for which k is the largest element in the cycle
containing 1. Find a closed form expression for a(n, k).

Solution by Jerrold W. Grossman, Department of Mathematics and Statistics, Oakland
University, Rochester, MI.

The answer is a(n, k) = (n!)/(n − k + 1)(n − k + 2) for k ≥ 2 and a(n, 1) =
(n − 1)!.

We show more generally that in a random permutation of {1, 2, . . . , n}, the proba-
bility that l specific numbers are in the same cycle and m specific other numbers are
not in that cycle is

m! (l − 1)!
(l + m)! . (1)
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Without loss of generality we take the first subset of numbers to be {1, 2, . . . , l} and
the second subset to be {l + 1, l + 2, . . . , l + m}. We proceed by induction on n,
starting with the base case n = l + m. Among all (l + m)! permutations, there are
(l − 1)! ways to have one cycle consist of exactly the numbers {1, 2, . . . , l} and m!
ways to have a permutation of the remaining numbers outside that cycle. Now for the
inductive step we can construct a random permutation of {1, 2, . . . , n + 1} by tak-
ing a random permutation of {1, 2, . . . , n}, written in its full cycle structure (where,
by the inductive hypothesis, the probability that 1, 2, . . . , l are in the same cycle and
l + 1, l + 2, . . . , l + m are not in that cycle is given by Expression (1)), and randomly
inserting the number n + 1 into any of the n + 1 positions (immediately following any
of the n numbers or after the final right parenthesis). Thus the desired probability does
not change and our proof is complete.

This result applies to the given problem with l = 2 (the numbers 1 and k) and m =
n − k (the numbers k + 1 through n). Substituting these values into Expression (1)
and multiplying this probability by the number of permutations gives the answer as
claimed. Note that if k = 1, then l = 1 and m = n − 1, giving a(n, 1) = (n − 1)!.

Also solved by Armstrong Problem Solvers, Michel Bataille (France), Elton Bojaxhiu (Albania) and Enkel
Hysnelaj (Australia), Robin Chapman (United Kingdom), CMC 328, Daniele Degiorgi (Switzerland), Natacha
Fontes-Merz, G.R.A.20 Problem Solving Group (Italy), Omran Kouba (Syria), Jeff Lutgen, Masao Mabuchi
(Japan), Matthew McMullen, Kim McInturff, José H. Nieto (Venezuela), Rob Pratt, Philip Straffin, Marian Tetiva
(Romania), Dennis Walsh, Timothy Woodcock, and the proposer. There were three solutions that did not express
the answer in closed form.

A quadratic cyclic system of equations December 2009

1832. Proposed by Michel Bataille, Rouen, France.

Find all solutions to the following system of equations:

4x2 + 8y2 + 2z2 + 18xy + 8yz + 9zx = 49(x + 1)

2x2 + 4y2 + 8z2 + 9xy + 18yz + 8zx = 49(y + 1)

8x2 + 2y2 + 4z2 + 8xy + 9yz + 18zx = 49(z + 1)

Solution by Northwestern University Math Problem Solving Group, Northwestern Uni-
versity, Evanston, IL.

With the change of variables x = 2u − v, y = 2v − w, and z = 2w − u, the system
becomes

uv − 2u + v = 1

vw − 2v + w = 1

wu − 2w + u = 1.

Note that if u = −1, then the first equation would become 2 = 1, which is impossible,
so u �= −1, and similarly v �= −1 and w �= −1. Thus the system of equations can be
rewritten as

v = 2u + 1

u + 1
, w = 2v + 1

v + 1
, and u = 2w + 1

w + 1
.

Letting f (t) = (2t + 1)/(t + 1), it follows that

u = f (w) = f ( f (v)) = f ( f ( f (u))) = 13u + 8

8u + 5
.
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Hence u2 − u − 1 = 0 and thus u = (1 ± √
5)/2. For each value of u the correspond-

ing values of v = f (u) and w = f (v) give the two solutions to the system:

u = v = w = 1 + √
5

2
and u = v = w = 1 − √

5

2
,

Thus the solutions to the original system are

x = y = z = 1 + √
5

2
and x = y = z = 1 − √

5

2
.

Editor’s Note. It is tempting to argue that just the cyclicity of the system implies
that all solutions satisfy x = y = z. This is not true in general as shown by the sys-
tem x2 + 2y2 + 3z2 = y2 + 2z2 + 3x2 = z2 + 2x2 + 3y2 = 24 which has one solu-
tion (x, y, z) = (2, 2, −2). Mark Ashbaugh generalized the problem by providing
a method to find all solutions of any system of cyclic quadratic equations in three
variables.

Also solved by George Apostolopoulos (Greece), Mark Ashbaugh, Robert Calcaterra, Robin Chapman
(United Kingdom), John Christopher, CMC 328, Chip Curtis, Daniele Degiorgi (Switzerland), Michael Golden-
berg and Mark Kaplan, Alex A. Griffith, Jonathan P. Hexter, Bianca-Teodora Iordache (Romania), Omran Kouba
(Syria), Victor Y. Kutsenok, Kee-Wai Lau (China), Anurag Setty and Nicholas Mecholsky, Stan Wagon, Haohao
Wang and Jerzy Wojdyło, and the proposer. There were three incorrect submissions.

The determinant of a Kronecker Product December 2009

1833. Proposed by Sam Vandervelde and Richard Torres, St. Lawrence University,
Canton, NY.

Let p be a prime, and let Mp be the p2 × p2 matrix whose i j th entry, 0 ≤ i, j ≤
p2 − 1, is given by

mi, j = (i mod p)( j mod p) 
i/p�
 j/p� ,

where (k mod p) denotes the remainder when k is divided by p and we take 00 = 1.
Prove that

det(Mp) ≡ (−1)(p+1)/2 (mod p).

Solution by Steven D. Smith (student) and Rick Mabry, Louisiana State University in
Shreveport, Shreveport, LA.

We assume that p is odd, else the result does not hold. (It is easy to check separately
that det(Mp) ≡ 1 when p = 2.) All our variables are nonnegative integers and our
equivalences are all modulo p.

The matrix Mp can be given by two identical, smaller matrices via the Kronecker
product, as follows,

Mp = Vp ⊗ Vp,

where Vp is the p × p matrix whose i j th entry (0 ≤ i, j ≤ p − 1) is given by

vi, j = i j ,

so Vp is a Vandermonde matrix. It is known that if A and B are n × n matrices, then
det(A ⊗ B) = (det A)n(det B)n , thus

det(Mp) = det(Vp ⊗ Vp) = det(Vp)
2p.
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A well-known formula for the determinant of a Vandermonde matrix gives

det(Vp) =
∏

0≤ j<i<p

(i − j) =
p−1∏
k=1

(k!).

Furthermore,

det(Vp)
2 =

p−1∏
k=1

(k!)2 = (p − 1)2(p − 2)4(p − 3)6 · · · 22(p−2)12(p−1) (1)

≡ 12p 22p · · ·
(

p − 1

2

)2p

=
((

p − 1

2

)
!
)2p

, (2)

where (2) is obtained by folding the sequence of terms in (1) about its center and using
(p − i)2 ≡ i2, for i = 1, 2, . . . , (p − 1)/2. Next we ‘unfold’ the expression in (2);
first we note that x2p ≡ x2 for any x , thus

det(Vp)
2 ≡

((
p − 1

2

)
!
)2

=
(

1 · 2 · · · p − 1

2

)(
p − 1

2
· · · 2 · 1

)
,

next we apply the equivalence k ≡ (−1)(p − k), which holds for any k, to get,

det(Vp)
2 ≡

(
1 · 2 · · · p − 1

2

) (
p + 1

2
· · · (p − 2)(p − 1)

)
(−1)(p−1)/2

= (−1)(p−1)/2(p − 1)!.
Finally, by Wilson’s Theorem,

det(Mp) = (det(Vp)
2)p ≡ ((−1)(p−1)/2(p − 1)!)p

≡ ((−1)(p+1)/2)p = (−1)(p+1)/2.

Remark. The primality of p is not used through equation (1). At that point, if p is not
prime we may write p = m1m2, where 1 < m1 ≤ m2 < p. Since each of m1, m2 will
occur as a distinct factor of (p − 1)2(p − 2)4(p − 3)6 · · · 22(p−2)12(p−1) (even when
m1 = m2), we see that det(Mp) ≡ 0 when p is not prime.

Also solved by Michel Bataille (France), Elton Bojaxhiu (Albania) and Enkel Hysnelaj (Australia), Robert
Calcaterra, Robin Chapman (United Kingdom), Omran Kouba (Syria), Elias Lampakis (Greece), Éric Pité
(France), and the proposers.

The solution to Problem 1834 will appear in the next issue.

An integral identity for the Tree Function December 2009

1835. Proposed by Finbarr Holland, University College Cork, Ireland.

Let T be the so-called tree function defined by the power series

T (z) =
∞∑

n=1

nn−1

n! zn.

For 0 ≤ x < ∞ let g(x) = T (xe−x). Show that g is continuous on [0, ∞) and that if
0 < a < 1, then

(1 − a)

∫ ∞

0

(
g(x)

x

)a

dx + a
∫ ∞

0

(
g(x)

x

)1−a

dx = a(1 − a)π2 csc2(πa).
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Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

For 0 ≤ x < ∞, let ϕ(x) = xe−x . Since ϕ′(x) = (1 − x)e−x it follows that ϕ is in-
creasing on [0, 1] and decreasing on [1, ∞); in particular ϕ takes its values in [0, 1/e].
On the other hand, from Stirling’s formula nn−1e−n/n! = O(1/n3/2). It follows that the
series defining T is uniformly convergent on the interval [0, 1/e], and consequently T
is continuous on this interval. From this we conclude that g = T ◦ ϕ is continuous on
[0, ∞).

In fact T and ϕ are linked in a more substantial way. Indeed, starting from ϕ we can
define two continuous bijections:

ϕ0 : [0, 1] → [0, 1/e], x �→ xe−x and ϕ1 : [1, ∞) → (0, 1/e], x �→ xe−x ,

and it is a well-known result [Corless et al., On the Lambert W function, Advances in
Computational Mathematics 5 (1996) 329–359] that ϕ−1

0 is in fact the tree function T
considered in this problem. Thus for x ≥ 0, g(x) is the unique solution y ∈ [0, 1] of
the equation ye−y = xe−x . In particular g(x) = x for 0 ≤ x ≤ 1.

For x > 1 we use the fact that g(x)e−g(x) = xe−x to conclude that g(x)/x = e−h(x)

where h(x) = x − g(x). The function x �→ h(x) is increasing on [1, ∞) and x − 1 ≤
h(x) ≤ x for x ≥ 1. It follows that for 0 < a < 1 and x ≥ 1, (g(x)/x)a = e−ah(x) ≤
eae−ax . This proves the convergence of the integral

∫ ∞
0 (g(x)/x)a dx . For 0 < a < 1

define

I (a) =
∫ ∞

0

(
g(x)

x

)a

dx = 1 +
∫ ∞

1
e−ah(x) dx . (1)

The winning idea is that h, which is a continuous increasing bijection from [1, ∞)

onto [0, 1), has an inverse that can be easily expressed. Indeed, if t > 0 then there
exists a unique x > 1 such that h(x) = t , and

x − t

x
= x − h(x)

x
= g(x)

x
= e−h(x) = e−t ,

hence x = h−1(t) = t/(1 − e−t).
Making the change of variable t = h(x) in Equation (1) and integrating by parts

give

I (a) = 1 +
∫ ∞

0
e−at(h−1)′(t) dt

= 1 + e−at h−1(t)

∣∣∣∣
t=∞

t=0

+ a
∫ ∞

0
e−at h−1(t) dt

= 1 − 1 + a
∫ ∞

0
e−ath−1(t) dt = a

∫ ∞

0

te−at

1 − e−t
dt.

Recalling that
∑m−1

n=0 e−nt = (1 − e−mt)/(1 − e−t) for t > 0 and m > 0, we write

I (a) − a
m−1∑
n=0

∫ ∞

0
te−(a+n)t dt =

∫ ∞

0

te−(a+m)t

1 − e−t
dt.

The simple inequality t/(1 − e−t) ≤ 1 + t , which is equivalent to 1 + t ≤ et , and the
fact that

∫ ∞
0 te−tβ dt = 1/β2 for β > 0 imply that∣∣∣∣∣I (a) − a

m−1∑
n=0

1

(a + n)2

∣∣∣∣∣ ≤ 1

a + m
+ 1

(a + m)2
.
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Letting m tend to ∞ gives

I (a) = a
∞∑

n=0

1

(a + n)2
.

Therefore, for 0 < a < 1,

(1 − a)I (a) + aI (1 − a) = a(1 − a)

( ∞∑
n=0

1

(a + n)2
+

∞∑
n=0

1

(1 − a + n)2

)

= a(1 − a)

(
1

a2
+

∞∑
n=1

(
1

(a + n)2
+ 1

(a − n)2

))
.

Finally, the conclusion of the problem follows from the well known expansion

π2 csc2(πz) =
∑
n∈Z

1

(z + n)2
,

which is valid for z ∈ C \ Z.

Editor’s Note. The fact that ϕ−1
0 = T can be easily obtained by using Lagrange’s In-

version Formula.

Also solved by Paul Bracken, Robin Chapman (United Kingdom), Tony Tam, and the proposer. There was one
partial solution.

Answers

Solutions to the Quickies from page 392.

A1005. Suppose both A and B are dense in X . Since A and B are both Gδ sets,
there exist {An} and {Bn}, two sequences of open sets, such that A = ∩∞

n=1 An and
B = ∩∞

n=1 Bn . Because A and B are dense, it follows that An and Bn are dense open
sets for each positive integer n. Thus C(An) and C(Bn) are nowhere dense for each
n. (Here C(S) denotes the complement of S.) Therefore C(A) = ∪∞

n=1C(An) and
C(B) = ∪∞

n=1C(Bn) are both sets of the first category, which says that C(A) ∪ C(B)

is also of the first category. since (X, d) is a complete metric space, it is not of the first
category by the Baire Category Theorem. Thus it follows that C(C(A) ∪ C(B)) =
A ∩ B is not of the first category, which is a contradiction and completes the proof.

A1006. Because B ′′ B bisects ∠B and B ′′C ′′ is parallel to BC , it follows that
∠AB′′ B = ∠CBB′′ = ∠B ′′BA. Using the fact that the circumradius R of �XYZ is
given by R = YZ/(2 sin ∠ZXY), it follows that the circumradii of �AB′ B ′′ and �ABB′
are equal, each respectively equal to AB ′/(2 sin ∠AB′′ B) and AB′/(2 sin ∠B ′′BA).
Similarly, the circumradii of �AC′C ′′ and �AC′C are equal. Using the problem as-
sumption, it follows that the circumradii of �AB′ B and �AC′C are equal. Thus

BB′

2 sin ∠A
= CC′

2 sin ∠A

and BB′ = CC′. Finally, by the Steiner–Lehmus Theorem, AB = AC as desired.
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PAUL J. CAMPBELL, Editor
Beloit College

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles, books, and other materials are
selected for this section to call attention to interesting mathematical exposition that occurs out-
side the mainstream of mathematics literature. Readers are invited to suggest items for review
to the editors.

Rehmeyer, Julie, Crowdsourcing peer review, Science News (9 September 2010), http://www.
sciencenews.org/index/generic/activity/view/id/63252/title/Crowdsourcing_
peer_review.

Lipton, R.J., An update on Vinay Deolalikar’s “proof,” http://rjlipton.wordpress.com/
2010/09/15/an-update-on-vinay-deolalikars-proof/#more-5443.

What’s the latest on P = NP? As you might expect, there is yet no definitive resolution of the
claim in August by Vinay Deolalikar to have proved P �= NP. However, great interest, coupled
with the contemporary craze of Internet social networking, has produced a flood of peer-like
reviews that author Rehmeyer calls “crowdsourcing.” Commentators have found flaws in the
proof, but Deolalikar plans to submit an amended paper to the standard review process of a
journal. Journal editors may find in “crowdsourcing” a new and improved method for peer
review: Instead of sending submissions to surprised referees, relying on their velleity to respond,
and hammering on them after months of no response, why not just assemble a cadre of “friends”
or “followers” and get instant referee reports? Indeed, author Lipton asks “how long should a
claim of a great result remain unresolved?” and hopes for “some closure soon.” (But what’s the
hurry?) Of course, not many papers in mathematics are Twitter-short; and despite the appeal
to ego, how many mathematicians could be excited about refereeing yet another “Note on a
Theorem in Analysis”? Moreover, thoughtful and measured reflection may be far more valuable
than the result of sorting a gram of wheat from the bushel of chaff of dozens (or hundreds) of
instant responses.

Reitano, Robert R., Introduction to Quantitative Finance: A Math Tool Kit, MIT Press, 2010;
xxxiv + 709 pp, $80. ISBN 978-0-262-0369-7.

This book starts with logic, moves on through number systems to metric spaces, introduces open
and closed sets, considers sequences and series and their convergence. Then it does probability
(discrete and continuous) and calculus (differentiation and integration). That’s a lot for one
book (and particularly for the one-semester graduate course that the author recommends the
book for), even though each topic is parsimoniously subsetted to the parts relevant to portfolio
management and investment banking. What distinguishes the book is that results are proved;
this book is not a collection of formulas: “[F]ew good careers . . . depend on the application
of standard formulas in standard situations. All such applications tend to be automated and run
in companies’ computer systems. . . .” What makes it valuable for mathematicians striving for
relevance is that each chapter concludes with a section on applications to finance (sometimes
longer than the rest of the chapter). There are exercises, and both a student solutions manual and
an instructor’s guide are available. This could be a useful book for a topics course in quantitative
finance for senior mathematics majors (non-majors wouldn’t be able to handle it). (Pace Euclid,
is greed the best motivation for mathematics?)

Math. Mag. 83 (2010) 398–399. doi:10.4169/002557010X529833. c© Mathematical Association of America
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Mahajan, Sanjoy, Street-Fighting Mathematics: The Art of Educated Guessing and Opportunis-
tic Problem Solving, MIT Press, 2010; xv + 134 pp, $25 (P). ISBN 0–978–0–26251429–3.
Free download under Creative Commons license at http://mitpress.mit.edu/books/full_
pdfs/Street-Fighting_Mathematics.pdf.

Bartlett, Tom, The gospel of well-educated guessing, Chronicle of Higher Education (2 May
2010), http://chronicle.com/article/The-Gospel-of-Well-Educated/65351/.

Dubner, Stephen J., Surely you must be joking, Mr. Mahajan! The “street-fighting mathemati-
cian” answers your questions. Freakonomics (New York Times blog) (16 July 2010), http:
//freakonomics.blogs.nytimes.com/2010/07/16/surely-you-must-be-joking-mr-
mahajan-the-street-fighting-mathematician-answers-your-questions/.

Don’t be put off by this book’s Foreword (it’s not by author Mahajan), which begins ominously:
“Most of us took mathematics courses from mathematicians—Bad Idea! Mathematicians see
mathematics as an area of study in its own right. . . . [M]athematics courses, as they are taught
today, are seldom helpful and are often downright destructive.” Well, those certainly are fighting
words! Fortunately, although in support of the title the author touts “shoot first and ask questions
later,” that advice is in the spirit of a “valuable [mathematical] problem-solving philosophy.”
The book’s subtitle is accurate—the book is about educated guessing in mathematics. It begins
with dimensional analysis (doing without is “like fighting with one hand tied behind our back”);
proceeds to “easy cases” (extreme cases for integrals, areas, volumes, and drag); uses “lumping”
for estimation (from which Stirling’s approximation results); recommends “seeing an idea” via
pictorial proofs (the AGM inequality emerges); uses “low-entropy” expressions for successive
approximations (try

∫ π/2
−π/2(cos t)100 dt); and applies Polya’s advice to solve a simpler problem

first (Euler-Maclaurin summation makes an appearance). From the contents, you can see that
this book is for the aspiring streetwise mathematician—but one who must already have mas-
tered the jujitsu of calculus. (Publishers: Although Mahajan notes in the long Freakonomics
interview that his next book will be Street-Fighting Tools for Science and Engineering, please,
no more provocative titles! We can do without Back-Alley Boolean Algebra, Kung Fu Functors,
No-Holes-Barred Homology, Mixed Mathematical-Martial Arts, Jedi Set Theory, Weierstrass
Wrestlingmania, etc., ad nauseam—or even ad humorem.)

Elwes, Richard, To infinity and beyond: The struggle to save arithmetic, New Scientist (2773)
(16 August 2010).

Valgreen, Jesper, Letters: Straight sets, New Scientist (2781) (6 October 2010).

Stillwell, John, Roads to Infinity: The Mathematics of Truth and Proof, A K Peters, 2010; xi +
203 pp, $39. ISBN 978-1-56881-466-7.

Gödel’s incompleteness theorem says that some true statements in arithmetic cannot be proved
from the Peano axioms, and Gödel gave a self-referential example. Are there more-prosaic ex-
amples of “unprovable theorems”? Jeff Paris and Leo Harrington in 1977 gave one based on a
variation of Ramsey’s theorem, and others can be derived from Kruskal’s theorem about tree
embeddings and the related graph minor problem. Now Harvey Friedman (Ohio State Univ.)
has found other examples, based on expansive linear growth (ELG) functions, a subclass of
strictly dominating functions (ones for which the output is larger than the input). However,
even the statements about ELG functions can be proved if one assumes the existence of large
cardinal numbers; so Friedman asserts that large cardinals will be a conventional and essential
part of “concrete mathematics” in the future. Is the choice then between belief in large cardinals
vs. unease with undecidable statements? Is it Scylla vs. Charybdis? The Pit of infinity, or the
Pendulum that cuts us off from truths? The response letter from Valgreen contends that a “fini-
tist” mathematics does not lead to just “finite mathematics” but indeed still allows consideration
of potentially infinite sets, such as the natural numbers (which even Kronecker didn’t want to
lose). Because Friedman’s own work is both long and esoteric, Elwes’s interpretive article is
valuable, as is Stillwell’s book, which recounts—in remarkably understandable fashion!—the
history of infinity and provability to just months before Friedman’s latest results.
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